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Cosmological models 
 

- Can a galaxy move faster than light? 

- How old is the Universe and how big is the visible Universe?  

- When did the dark energy conquer the matter? 
 
Abstract 
In this article we begin by presenting the coordinate system (distance, time) most often used in general 
relativity. We continue by introducing the scale factor and the Hubble flow and we show how the Hubble 
law can be deduced. We show how the radial velocity of an object can be expressed as a sum of two parts: 
a general expansion velocity and a local velocity – the local part giving a deviation from the Hubble 
expansion. We continue by examining the movement of light in the expanding Universe. And we shall see 
that a galaxy cannot move faster than light. 
We use the Milne Model of the Universe to shed some light on the movement of galaxies. In this model 
(the empty Universe) we can globally use two coordinate systems: a generally relativistic and a special 
relativistic coordinate system. It is illustrative to compare the description of the movements of galaxies 
using these two very different coordinate systems. In the Milne model we can directly translate the velocity 
in general relativistic coordinates to special relativistic coordinates and show that no ‘galaxy’ is moving 
faster than light. 
We look at the forces that govern the evolution of the scale factor (matter and dark energy) and mentions 
three exact solutions of the equation of motion, among these the pt. preferred model of the Universe. We 
use these models to calculate the age of the Universe(s) using the cosmological parameters as measured by 
the Planck Satellite. 
Also we calculate the size of the visible Universe using the pt. preferred model again using Planck Satellite 
data. 
We argue for the slowdown in pace of events as seen on cosmological distances. The ‘video’ received from 
great distances is seen in slow motion. 
Finally we argue that viewing the cosmological redshift as a continuous Doppler shift in the expanding 
Universe is a natural consequence of the equivalence principle and the cosmological principle.  

The Coordinate System 
In cosmology it is common to use a coordinate system based in the position of the observer being 

at rest relative to the Hubble flow (in reality: at rest relative to the cosmological background 

radiation – it means that the observer sees the same radiation temperature in all directions without 

any dipole contribution). The radial distance from the observer to an object at the time 𝑡 is denoted 

by 𝑠(𝑡). But there are many different distance concepts in the expanding Universe. As there are 

different time concepts. What is the more precise definition of distance and time that is most 

common in use?  

Distances  
We shall use the proper distance 𝑠(𝑡) between the observer and the object of interest. That means 

(on a given time 𝑡 – see below) the sum of distances as measured between galaxies close to each 

other in the direction of the object of interest – the galaxies all following the Hubble flow (see 

below). The distance between two galaxies close to each other (with small relative velocity) should 

be measured in their rest-system (proper distance). 
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No matter how fast the galaxies moves as seen by the observer there is no (Lorentz-) contraction of 

distance in this definition – as opposed to distances in special relativity.  

Movements orthogonal to the radial distance will involve an angular part that also describes the 

eventual curvature of space. This is relevant in distance measures like angular diameter distance or 

luminosity distance. We will not define these distance measures in this text. They all can be 

expressed as a function of the proper distance and the scale factor 𝑅(𝑡). 

Time  
We will use the proper time 𝑡 from the Big Bang and ahead for a cosmological observer at rest 

relative to the Hubble flow.  Expressed otherwise: the time as measured by a watch at rest relative 

to a galaxy following the expansion of space without peculiar motion. It is denoted as the 

cosmological (proper-) time. 

If we denote the present radial distance to the object of interest 𝑠0, we can express the time evolution of 

the distance/position of the object of interest by the equation 

(1)      𝑠(𝑡) = 𝑅(𝑡) ∙ 𝑠0  Time evolution of distance to object following the Hubble flow 

where 𝑅(𝑡) is a common scale-factor for all objects following the expansion of space.  

If you think of the balloon model of the Universe the scale factor is a kind of ‘blow-up’ factor. 

For all objects following the expansion without peculiar motion the value 𝑠0 will be a constant. For these 

moving objects the scale factor contains the whole time dependence of the radial distance. 

The distance 𝑠0 is often denoted as a co-moving distance and is a constant of time for objects following the 

expansion of space. This however does not mean that the object do not move relative to the observer – it 

only means that the time dependence of the position is given by eq. (1). 

Given equation (1) we can argue that the value of the scale factor now (time 𝑡0) is 1, that is 𝑅(𝑡0) = 1. 

The time dependence of the scale factor 𝑅(𝑡) is governed by the cosmological differential equation, see 

below. Thus it is the cosmological gravitational forces that governs the time evolution of the proper 

distance 𝑠(𝑡).  

We will now pursue other consequences of equation (1). We begin looking at the Hubble law. 

We now looks at a galaxy/observer that is following the Hubble flow. The comoving  distance 𝑠0 from us (at 

the center of the coordinate system) to the galaxy/remote observer is then a constant. Therefore the radial 

velocity of the galaxy/remote observer is given by 

(2)          𝑣(𝑡) = 𝑠′(𝑡) = 𝑅′(𝑡) ∙ 𝑠0 

This equation shows that the velocity at any given time 𝑡 is proportional to the present proper distance 𝑠0. 

We will transform this equation as follows. 

We begin by defining the Hubble-parameter 𝐻(𝑡) at a given time 𝑡: 

(3)        𝐻(𝑡) =
𝑅´(𝑡)

𝑅(𝑡)
                                                             Hubble parameter at the time 𝑡 

The Hubble parameter therefore is the expansion rate of the Universe at a given time. 
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Using this definition we transform equation (2) as follows:  

                     𝑣(𝑡) = 𝑠′(𝑡) = 𝑅′(𝑡) ∙ 𝑠0 =
𝑅´(𝑡)

𝑅(𝑡)
∙ 𝑅(𝑡) ∙ 𝑠0 = 𝐻(𝑡) ∙ 𝑠(𝑡)    

where we have been using equation (1).  

Thus we have shown that as a consequence of equation (1) the Hubble law is valid at all times: 

(4)      𝑣(𝑡) = 𝐻(𝑡) ∙ 𝑠(𝑡)  Hubble law, time 𝑡 

For all galaxies following the expansion of the Universe at any given time 𝑡 the radial velocity is 

proportional to the proper distance at the same time. 

At the present time (time 𝑡0) we have 

(5)       𝑣(𝑡0) = 𝐻(𝑡0) ∙ 𝑠0    Hubble law, time 𝑡0 (now) 

The present value of the Hubble parameter 𝐻0 is 0.0692/Gyr or 6.92% per Gyr    (1 Gyr = 109 yr). 

It should be noted that the velocity of a galaxy 𝑣(𝑡) (or 𝑣(𝑡0)) is a sum of local velocity differences between 

a series of galaxies/remote observers following the Hubble flow located at the track of the light from us to 

the remote galaxy. This is a consequence of the definition of the proper distance 𝑠(𝑡) as described above. 

This is the reason why there is no upper limit on the velocity of the galaxies – as it is the sum of local 

velocity differences. The only limit to the velocity would be in a Universe limited in distance (a Universe of 

positive curvature – see below).  

The radial movement of light in the Universe 
Almost all of the information we receive from cosmological distances is in the form of EM-radiation (’light’).  

It is therefore important how the light moves in the expanding Universe.  

If an object (light, galaxy..) does not follow the Hubble flow and has its own peculiar movement, the radial 

velocity of the object can be expressed as a sum of two contributions: an expansion part given by equation 

(4) and a local velocity 𝑣local(𝑡) relative to the Hubbleflow. The combined velocity is (as it follows from 

equation (1)) 

𝑣𝑟𝑎𝑑𝑖𝑎𝑙(𝑡) = 𝑠′(𝑡) = 𝐻(𝑡) ∙ 𝑠(𝑡) + 𝑣local(𝑡)  

In the case of light we have 𝑣local = ±𝑐. The radial velocity of light therefore is 

(6) 𝑣𝑟𝑎𝑑𝑖𝑎𝑙(𝑡) = 𝑠′(𝑡) = 𝐻(𝑡) ∙ 𝑠(𝑡) ± 𝑐   Radial velocity of light at time 𝑡 

The constant c is approximately 300 000 km/s. 

If we denote the expansion velocity at the place of the light by  𝑣Hubble = 𝐻(𝑡) ∙ 𝑠(𝑡) , the formula for the 

velocity of light becomes  

𝑣𝑟𝑎𝑑𝑖𝑎𝑙,𝑙𝑖𝑔ℎ𝑡 = 𝑣Hubble ± 𝑐  

Now we are able to answer the question:  

Can a galaxy move faster than light?  
In an infinite Universe it is natural to pose the question: can a galaxy move faster than light? When we 

inspect the Hubble law (equation (4)) the velocity of the galaxy is proportional to the proper distance. And 
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if there are no limit on this distance (in a critical or subcritical Universe, see below) there also will be no 

limits on the velocity. Does that mean that the galaxy moves faster than light? 

The answer is no. In this case the so-called Milne Model of the Universe is especially illuminating, see next 

chapter.  

Here we take a look at an example. Following equation (6) we get 

 𝑣𝑟𝑎𝑑𝑖𝑎𝑙,𝑙𝑖𝑔ℎ𝑡 = 𝑣Hubble ± 𝑐  

The expansion velocity 𝑣Hubble(𝑡) = 𝐻(𝑡) ∙ 𝑠(𝑡) at the place of the light/photon could be 10𝑐 for a suitably 

value of the distance 𝑠 – and the velocity of light then will be either 10𝑐 + 𝑐 = 11𝑐  for light moving away 

from the galaxy in the direction away to us or 10𝑐 − 𝑐 = 9𝑐 if the light moves in our direction as seen from 

the galaxy.  

That is - the velocity of the galaxy is well within the limits of the speed of light! No superluminal galaxy. 

As we noted above the reason for velocities exceeding the value 𝑐 is the choice of radial distance measure 

(the proper distance). 

Now to the question:  will light emitted in our direction (as seen from the emitting galaxy) always be able to 

reach us? The answer depends on which cosmological model we look at. In some models the answer is yes 

– for example the model we think is the best current model. 

If the expansion velocity at the place of the light/photon never gets below 𝑐 we will never see the light – as 

the light/photon is moving away from us at all times. The proper distance is increasing and never becomes 

0 (where we are!). We talk here about horizons of two types (past- and future-horizons). In this sense there 

are parts of space-time we will never be able to communicate with. And galaxies that we will never see.  

Milne-cosmology – very abbreviated 
There is one cosmological model where we can choose two kinds of coordinate systems. The one 

coordinate system is as described above (time and radial distance). This we will call the GR-system 

(GR=general relativity). The other possible coordinate system is defined as in special relativity. We will 

denote this coordinate system SR (SR=special relativity). The reason that we can use SR is that the Milne 

Universe is empty! No gravitational forces acts on the ’particles’ in this Universe. Therefore the velocity of a 

’galaxy’ is constant (no acceleration). Nevertheless this model is illustrative because you can translate 

directly from GR-velocities to SR-velocities.  

The translation from the galaxy GR-velocity 𝑣𝐺𝑅 to the corresponding galaxy SR-velocity 𝑣𝑆𝑅 is 

 (7)  𝑣𝑆𝑅 = 𝑐 ∙ tanh (𝑣𝐺𝑅 𝑐)⁄  

where 𝑣𝐺𝑅 = 𝐻0 ∙ 𝑠0 is radial velocity of the ’galaxy’ in the infinite Universe described by the proper 

distance 𝑠0 and galaxy proper time and the corresponding distances and times as described in SR. Take a 

look at figure 1 below. 

The velocity of light in SR-coordinates is of course ±𝑐 everywhere in the coordinate system. 
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Equation (7) shows that the SR-velocity of the ’galaxy’  𝑣𝑆𝑅 is approaching the speed of light 𝑐 as 𝑣𝐺𝑅 𝑐⁄  is 

approaching infinity. This follows from the fact 

that tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥) (𝑒𝑥 + 𝑒−𝑥)⁄ → 1 as 

𝑥 → ∞. The most remote galaxies in the infinite 

GR-space are moving at an infinite speed away 

from the observer while –  as described in the 

finite SR-coordinate system – are moving at the 

speed of light 𝑐 away from the observer.  

The choice of coordinate system therefore (of 

course) gives a very much different description of 

the movement of the galaxy and light as we have 

seen here. 

Figure 1: velocity of galaxy in GR og SR - here 𝑣𝑆𝑅 vs. 𝑣𝐺𝑅  

If as an example we put 𝑣𝐺𝑅 = 2𝑐 then equation (7) gives the velocity of the galaxy in SR system 𝑣𝑆𝑅 =

0.96 𝑐. Thus we see that the galaxy is not moving faster than light. The speed of light in GR-coordinates will 

– using formula (6)  ̶  be 𝑣𝐺𝑅 = 2𝑐 ± 𝑐, that is 3𝑐 or 1𝑐. The proper distance to the observer (us) of the light 

will grow regardless of the direction of emission (as seen from the galaxy). This is solely a consequence of 

the choice of coordinate system. If we choose SR-coordinates the velocity of light is 𝑣𝑆𝑅 = ±𝑐.  

In the Milne-universe there are no horizons. We will be able to get information from all parts of the Milne-

universe as is the case in SR.  

Distances between ’galaxies moving rapidly away from us are in SR-coordinates Lorentz contracted. If we in 

GR-coordinates have a long line of galaxies separated by a constant mutual distance, the galaxies in SR will 

not be separated by a constant distance, the more remote galaxies will be separated by a smaller distance 

because of the Lorentz contraction. 

The redshift of light from a galaxy in SR-coordinates is a Doppler shift given by the formula  

 1 + 𝑧 =
𝜆0

𝜆𝑒
= √

1+𝑣𝑆𝑅 𝑐⁄

1−𝑣𝑆𝑅 𝑐⁄
   redshift in SR-coordinates 

It is easy to show – using formula (7) and formula (8) from below and 𝑅(𝑡) = 𝐻0 ∙ 𝑡 for the Milne Model – 

that this formula implies the well known formula in GR (the formula below). In more detail formula (8) 

below gives 𝑠0 = 𝑐 𝐻0 ∙ ln (𝑅(𝑡0) 𝑅(𝑡𝑒))⁄⁄  where 𝑅(𝑡𝑒) is the scale factor at the time of emission. Using this 

result in equation (7) we are led to the wanted result:  

 1 + 𝑧 =
𝜆0

𝜆𝑒
=

𝑅(𝑡0)

𝑅(𝑡𝑒)
   redshift in GR-coordinates 

In Milne-cosmology the cosmological redshift can be viewed upon as a single Doppler shift no matter the 

value of the redshift 𝑧. This is a special case of the Milne Model. If the Universe contains matter/energy (as 

it does!) we can’t cover the whole Universe by a single SR-system (inertial system) but must rely on only 

local SR-systems at rest relative to the Hubble flow (Lorentz systems) so small that the universal 

gravitational forces has no role when we describe the motions. The size of these systems could be up to 

10% of the Hubble length at the time – see below. It is always possible to find such a system as it is assured 

by the principle of equivalence in GR. The cosmological redshift then can be viewed upon as a continuous 

Doppler shift of the radiation in its long way from the emitter galaxy to the observer galaxy.  
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The two formulas of redshift (the SR-formula and the GR-formula) mentioned in this chapter are both 

correct (the SR-formula only in the Milne Model) but refers to two very different coordinate systems.  

 

The movement of light in the expanding Universe, proper distance and comoving distance 
The equation of motion (6) has two solutions when the time 𝑡0 is one of the limits of the integral:  

(8)       Minus-solution (past): 𝑠(𝑡) = 𝑅(𝑡) ∙ ∫
𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡0

𝑡
  and 𝑠0 = ∫

𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡0

𝑡
 

(9)       Plus-solution (future): 𝑠(𝑡) = 𝑅(𝑡) ∙ ∫
𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡

𝑡0
  and 𝑠0 = ∫

𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡

𝑡0
 

We have used equation (1) to get the formula for the comoving distance 𝑠0. 

Equation (8) gives the proper distance 𝑠(𝑡) (and the comoving distance 𝑠0) to the galaxy emitting the 

light at the time 𝑡. We receive the light at the time 𝑡0.  

Equation (9) gives the proper distance 𝑠(𝑡) (and the comoving distance 𝑠0) to the galaxy receiving the 

light from us at the time 𝑡. We have emitted the light at the time 𝑡0. 

In both equations the distance 𝑐 ∙ 𝑑𝑡 is being projected to the future/past by using the formula (1) 

𝑑𝑠0 = 𝑐 ∙ 𝑑𝑡/𝑅(𝑡).  

To calculate those distances we have to know the formula for the scale factor 𝑅(𝑡). We will in the next 

section see how we can solve the cosmological differential equation for this scale factor function. 

The cosmological differential equation – how to solve for 𝑅(𝑡) 
The evolution in the scale factor 𝑅(𝑡) – and therefore the evolution in the distances to the remote galaxies 

– is governed by the forces that acts on large scales in the Universe. We will limit ourselves to two kinds of 

forces. The first is the attracting force between bodies as we know it from the gravitational law of Isaac 

Newton. This force will slow down the expansion. This force has its root in both the ’normal’ matter 

(baryonic matter) and the so called dark matter (as yet of unknown nature). The second force that 

influences the movement of galaxies is caused by the so called dark energy and accelerates/pushes the 

galaxies further apart.  

The cosmological differential equation is most simply expressed when we measure the matter/energy 

densities in units of the so called critical density: 

𝜌crit =
3𝐻0

2

8𝜋𝐺
    Critical mass density 

𝐻0 denotes (the present) value of the Hubble constant, and 𝐺 is the newtonian gravitational constant. 

We will use the symbol  

Ω𝑚 =
𝜌𝑚

𝜌crit
    Parameter denoting mass-density of matter 

and 

ΩΛ =
Λ

3𝐻0
2     Parameter denoting density of dark energy 

Λ denotes the cosmological constant, describing the energy density of empty (matter-free) space. 
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We make the remark that the matter parameter Ω𝑚 is a sum of a baryon density parameter Ω𝐵 = 0.0490 

(H and He in the early Universe) and Ω𝐶 = 0.2607 being the density parameter of cold dark matter. See ref. 

1 (Planck data). 

The cosmological differential equation governing the evolution of the scale factor is then 

(10)         𝐻0
−2 ∙ 𝑅′′(𝑡) = −0.5

Ω𝑚

𝑅(𝑡)2 + ΩΛ ∙ 𝑅(𝑡)  The cosmological differential equation 

where 𝑡 denotes the (cosmological) time and the primes denotes differentiation with respect to time. 

We have disregarded contributions from electromagnetic energy density and from neutrinos. They will play 

a role in the very early Universe. 

The term −0.5
Ω𝑚

𝑅(𝑡)2 is the negative ’Newtonian’ gravitational part of the acceleration, slowing down the 

movement of the galaxies relative to each other, while the term ΩΛ ∙ 𝑅(𝑡) describes a positive (repulsive) 

contribution to the acceleration of the galaxies (if we assume ΩΛ > 0) . 

The initial conditions for this differential equation is 

(11)      𝑅(𝑡0) = 1  og            𝑅′(𝑡0) = 𝐻0 Initial conditions 

The ‘natural’ units in the work with cosmological models  

𝑇𝐻 =
1

𝐻0
    Hubble time 

and 

𝐿𝐻 = 𝑐 ∙ 𝑇𝐻 =
𝑐

𝐻0
   Hubble length 

Measuring the time in units of the Hubble time gives the equation 

𝑅′′(𝑡) = −0,5
Ω𝑚

𝑅(𝑡)2 + ΩΛ ∙ 𝑅(𝑡)  The cosmological differential equation 

And the initial conditions 

𝑅(𝑡0) = 1  and            𝑅′(𝑡0) = 1 Initial conditions 

The unit of velocity is (using the natural units) 

 𝐿𝐻 𝑇𝐻⁄ = 𝑐 

The equation of motion of the light/photon therefore is 

𝑠′(𝑡) = ±1 +
𝑅′(𝑡)

𝑅(𝑡)
∙ 𝑠(𝑡)    𝑠(𝑡0) = 0         and  𝑠′(𝑡0) = ±1  

Where we should choose the sign + for light moving away from us and the sign – is chosen when the light is 

moving against us/the observer. 

 

The two parameters Ω𝑚 og ΩΛ determines the curvature of space – and therefore weather the space is 

finite or infinite. To be more precise we should add them together 
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Ω = Ω𝑚 + ΩΛ   Parameter for total mass/energy density 

This is the quantity that determines the curvature of space: 

a) If Ω = 1 the curvature is 0 and the space is infinite. The geometry of space is Euclidian  

b) If Ω > 1 the curvature is positive and the space is finite (2 dimensional model: surface of a ball) 

c) If 0 ≤ Ω < 1 the curvature is negative and the space is infinite 

The cosmological parameters have been measured by the e.g. the Planck satellite and the best values are 

(2018, Planck-satellite data and others): 

(12)      𝐻0 = (67.66 ± 0.42)

km

s
Mpc

⁄ = (20.74 ± 0.13)

km

s
Mlyr

⁄ = (0.0692 ± 0.0004)/Gyr   

Ω𝑚 = 0.3111 ± 0.0056  

ΩΛ = 0.6889 ± 0.0056  

Using these values we see that the Universe is very close to the critical value Ω = Ω𝑚 + ΩΛ = 1. In 

accordance with the so called inflation theories. The Universe thus has no (or almost none) curvature and 

the geometry of space is Euclidian (or almost..). See ref. 1 for more Planck data. 

Given the value of the Hubble parameter above we can make the following calculations: 

𝑇𝐻 =
1

𝐻0
= 14.45 Gyr     Hubble time 

𝐿𝐻 = 𝑐 ∙ 𝑇𝐻 =
𝑐

𝐻0
= 14.45Glyr   Hubble length 

The critical density can be evaluated: 

𝜌crit =
3𝐻0

2

8𝜋𝐺
=

3(2.192∙10−18 s⁄ )
2

8𝜋∙6.673∙10−11m3 kg∙s2⁄
= 8.598 ∙ 10−27 kg m3⁄   Critical  density 

If we measures this density in terms of H-atoms there will be 5.1 atoms per cubic meter! Are we talking 

about real nucleons we must ‘empty’ approximately 4 m3 to get our hand on 1!  

 

Some exact solutions to the cosmological differential equation 
In some cases it is possible to solve the cosmological differential equation exact. We discuss such 3 cases. 

a) We can get a whole class of solutions for the critical Universe where Ω = Ω𝑚 + ΩΛ = 1: 

The solution for the scale factor is 

(13)      𝑅(𝑡) = (√
Ω𝑚

ΩΛ
∙ sinh (

3

2
∙ 𝐻0 ∙ 𝑡 ∙ √ΩΛ))

2

3

  Scale factor, critical model 

 
The model is often called the Lambda CDM-model (CDM = Cold Dark Matter). 
If we wish to find the age of the model universe we have to solve the equation 𝑅(𝑡0) = 1. The solution is 
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(14)      𝑡0 =
2

3
∙

1

𝐻0
∙

ln (√
ΩΛ
Ω𝑚

+√1+
ΩΛ
Ω𝑚

)

√ΩΛ
   Age, critical universe 

 
Small exercise: derive this formula!  
We will use the formula to calculate the age of the Universe using the cosmological parameters from Planck 
satellite (ref. 1): 
 

𝑡0 =
2

3
∙

1

𝐻0
∙

ln (√0.6889
0.3111

+ √1 +
0.6889
0.3111)

√0.6889
= 0.954 ∙

1

𝐻0
= 0.954 ∙ 14.45 Gyr = 13.79 Gyr 

 
Which is the best value for the age of our Universe! 
 
We will also answer the question: when did the dark energy ‘defeat’ the gravitational force of the matter 
and finally being the driving force in the expansion of the Universe? 
To answer this question we take a look at equation (10) – the differential equation of the expansion of the 
Universe. On the left hand side we have the acceleration of the scale factor. When this acceleration is 0, we 
have equality between the two forces driving the expansion.  
We will solve the equation 𝑅′′(𝑡) = 0:  
 

0 = −0.5
Ω𝑚

𝑅(𝑡)2 + ΩΛ ∙ 𝑅(𝑡)   Force equality dark energy vs gravitational force 

 
We solve for 𝑅(𝑡): 
 

 𝑅(𝑡) = √0.5
Ω𝑚

ΩΛ

3
= √0.5

0.3111

0.6889

3
= 0.6089 

 
where we have used the cosmological parameters from (12). The solution of this equation is 
 
 𝑡 = 7.69 Gyr   After this time the dark energy dominates 
 
This already happened 13.79 Gyr − 7.69 Gyr = 6.1 Gyr ago. 
 

b) Another exact solution can be found in the case of Ω𝑚 = 1 and ΩΛ = 0 – a critical matter Universe 

without dark energy: 

𝑅(𝑡) = (
3

2
∙ 𝐻0 ∙ 𝑡)

2

3
   Scale factor, critical matter model 

 
This model is named the Einstein de Sitter model. 
If we again wish to find the age of this model of the universe we have to solve the equation 𝑅(𝑡0) = 1. The 
solution is 
 

𝑡0 =
2

3
∙

1

𝐻0
   Age, critical matter universe 

 
This age is 9.63 Gyr if we use the Planck data for the Hubble constant. This age is less than the age of the 
oldest stars. 
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c) A third exact solution can be found when Ω𝑚 = 0 and ΩΛ = 1 – a critical dark energy universe 

without matter. 

𝑅(𝑡) = 𝑒𝐻0∙𝑡   Scale factor, critical dark energy model 
 
This model has no Big Bang because the scale factor never will reach the value 0. It is by the way the only 
model having a constant Hubble parameter 𝐻(𝑡) = 𝐻0 for all values of time 𝑡. 
This model is of course not a realistic model as it contains no matter! 
 

Cosmological distance formulas and the size of the visible Universe 
We begin by calculating the size of the visible Universe today, using formula (8): 

(15)     𝑠0,𝑚𝑎𝑥 = 𝑅(𝑡0) ∙ ∫
𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡0

0
   The size of the visible Universe today 

We substitute the scale factor 𝑅(𝑡) using (13) and 𝑡0 using (14): 

(16)     𝑠0,𝑚𝑎𝑥 = 1 ∙ ∫
𝑐∙𝑑𝑡

(√
Ω𝑚
ΩΛ

∙sinh(
3

2
∙𝐻0∙𝑡∙√ΩΛ))

2
3

2

3
∙

1

𝐻0
∙

ln (√
ΩΛ
Ω𝑚

+√1+
ΩΛ
Ω𝑚

)

√ΩΛ

0
  

The cosmological parameters we get from (12) and the result is 

𝑠0,𝑚𝑎𝑥 = 47.0 Glyr   Radius visible Universe 2020 

This is 3.4 times bigger than the naive value 𝑐 ∙ 𝑡0 = 13.79 Glyr. The reason being of course that the 

distance to the emitting galaxy grows in the time the light travels toward us.  

It should be noted that this result does depend somewhat on what we have left out in the early Universe – 

the radiation energy density and neutrinos. And perhaps most of all: we have not taken into account a 

possible inflation in the very early Universe! So the value above can be regarded as an approximate size of 

the ‘rediscovered’ Universe after the inflation.  

 

Cosmological time dilation 
The cosmological time dilation can be seen for e.g. in the light curves from supernova type SN1a on  

cosmological distances. The duration of a typical time evolution will be prolonged by a factor 1 + 𝑧 where 𝑧 

is the redshift of wavelengths in the spectrum of the supernova.  

As is the case with distances (like wavelengths) the duration of all physical processes will be longer when 

they are observed on cosmological distances. You could say that ’video’ arriving from far away is shown in 

slow motion when viewed in the telescope. The duration is prolonged by the factor 1 + 𝑧. If e.g. the 

redshift is 9, the duration of all physical processes will be prolonged 10 times compared to the original local 

processes as it is viewed by a local observer.   

Another example is the cosmological background radiation having a redshift of approximately 1100, 𝑧 ≈

1100. The time evolution in this radiation will be multiplied by a factor of approximately 1100. The 

evolution is thus almost brought to a halt compared to the evolution as seen by a local observer – if any 

were present at the time of emission!  
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One way to argue for this dilation is this: 

We assume that the emitting and receiving galaxy follows the Hubble flow. In this case the comoving 

distance between the two objects is a constant. Therefore (formula (8)) 

𝑠0 = ∫
𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡0

𝑡𝑒
= ∫

𝑐∙𝑑𝑡

𝑅(𝑡)

𝑡0+∆𝑡0

𝑡𝑒+∆𝑡𝑒
   comoving distance for the emitting galaxy 

The lefthand side of the equation is the comoving distance between the two galaxies traveled by light 

emitted at the time 𝑡𝑒 and received at the time 𝑡0. And the righthand side is the comoving distance 

between the two galaxies traveled by light emitted at the time 𝑡𝑒 + ∆𝑡𝑒  and receaved at the time 𝑡0 + ∆𝑡0.  

From the equation above it follows (if ∆𝑡𝑒 and ∆𝑡0 is short times compared to the cosmological evolution 

time scale): 

𝑐∙∆𝑡𝑒

𝑅(𝑡𝑒)
=

𝑐∙∆𝑡0

𝑅(𝑡0)
    and thus  

∆𝑡𝑒

𝑅(𝑡𝑒)
=

∆𝑡0

𝑅(𝑡0)
  

Using the relation 1 + 𝑧 =
𝑅(𝑡0)

𝑅(𝑡𝑒)
  we finally conclude 

∆𝑡0 = ∆𝑡𝑒 ∙ (1 + 𝑧)   Cosmological time dilation 

as claimed. The original timespand ∆𝑡𝑒 as measured at the emitting object is ’enhanced’ by the factor (1 +

𝑧) at the receiver end. 

Redshift and Doppler shift 
 The redshift 𝑧 is of course defined by the equation 

1 + 𝑧 =
𝜆(𝑡0)

𝜆(𝑡𝑒)
    Definition of redshift 𝑧 

where 𝜆(𝑡0) is the measured wavelength in the galaxy spectrum and 𝜆(𝑡𝑒) is the laboratory value of the 

spectral line as emitted by the remote galaxy.  

Can this redshift – no matter how big – be explained using the nonrelativistic Doppler-formula?  The answer 

is – maybe to the surprise of some – yes. 

We can argue in this way: 

As a start we write the nonrelativistic Doppler formula like this: 

𝜆2−𝜆1

𝜆1
=

𝑣

𝑐
    Nonrelativistic Doppler formula 

 𝜆1 is the wavelength of light emitted from a source at rest to the observer and 𝜆2 is the wavelength of the 

light received by an observer moving away from the source at the velocity 𝑣 (𝑣 ≪ 𝑐). The redshift is in this 

case given by 𝑧 = 𝑣 𝑐⁄ . 

But why can this ‘local’ formula be applied to redshifts much bigger than 1? The answer is that it can’t – but 

we can ‘chop’ the redshift up in minor (local) parts along the path of the light from the emitter galaxy to the 

receiver galaxy. And then apply the equation on each minor contribution to the redshift.  

The emitter galaxy emits – as seen from this galaxy – light of wavelength 𝜆(𝑡𝑒). This light will pass a lot of 

galaxies/observers on the long way to the observer. We assume that all these galaxies/observers follows 

the Hubble expansion.  The galaxy/observer closest to the emitter galaxy is moving away from the emitter 
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galaxy and the light from the emitter galaxy will – as seen from this next galaxy – have a longer wavelength 

as the Doppler formula tells us. This is simply physics in a (local) Lorentz frame according to the principle of 

equivalence. The light moves on towards the next galaxy again receding from the previous galaxy. 

Redshifting the light further. Etc. (we could also argue that the emitter galaxy is moving backwards away 

from the next galaxy in line giving rise to a Doppler shift of the wavelengths present in the light from the 

emitter galaxy). 

According to the general theory of relativity it is always possible to choose a local inertial system (Lorentz 

frame) where we in a limited space can use the laws of physics exactly as in special relativity - without any 

reference to cosmic gravitational forces represented by the parameters Ωm og ΩΛ (equivalence principle).  

The size of such systems should be much less than the Hubble length (at present time 14 Glyr). In such a 

system the redshift is a non-relativistic Doppler shift due to the movement of the galaxies. The center of 

this non-expanding non-rotating system in free fall can be chosen to coincide with an observer following 

the Hubble expansion. 

In systems of larger sizes there will be second order effects when we want to describe movements – a sign 

that tells us that the cosmological gravitational forces can no longer be ignored.   

We transform the Doppler formula from above in the following way 

𝜆2−𝜆1

𝜆1
=

𝑣

𝑐
     transform to:     

∆𝜆

𝜆
=

𝑣

𝑐
 

The velocity 𝑣 is given by the Hubble law: 

∆𝜆

𝜆
=

𝑣

𝑐
=

𝐻(𝑡)∙𝑠

𝑐
= 𝐻(𝑡) ∙

𝑠

𝑐
= 𝐻(𝑡) ∙ ∆𝑡  

The time ∆𝑡 = 𝑠 𝑐⁄  is the time for the light to move from one nearby galaxy to the next in the path of the 

light from emitter galaxy to observer galaxy. 

But we remember the definition 𝐻(𝑡) = 𝑅′(𝑡) 𝑅(𝑡)⁄  and therefore 

∆𝜆

𝜆
= 𝐻(𝑡) ∙ ∆𝑡 =

𝑅′(𝑡)

𝑅(𝑡)
∙ ∆𝑡 =

𝑅′(𝑡)∙∆𝑡

𝑅(𝑡)
=

∆𝑅

𝑅
  

where we have used the approximation 𝑅′(𝑡) ∙ ∆𝑡 = ∆𝑅 valid for small values of ∆𝑡. 

Thus we have 

∆𝜆

𝜆
=

∆𝑅

𝑅
  

We now change to differentials and make an integration on both sides: 

∫
𝑑𝜆

𝜆

𝜆0

𝜆𝑒
= ∫

𝑑𝑅

𝑅

𝑅(𝑡0)

𝑅(𝑡𝑒)
  

from which we get 

ln (
𝜆0

𝜆𝑒
) = ln (

𝑅(𝑡0)

𝑅(𝑡𝑒)
)  

We remove the ln-function on both sides and finally we have 

(18)         1 + 𝑧 =
𝜆0

𝜆𝑒
=

𝑅(𝑡0)

𝑅(𝑡𝑒)
   Doppler shift: Doppler upon Doppler upon… 
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The wavelength scales as the scale factor (and therefore also as the distances) when we follow the 

continuous Doppler shift happening as the light/photons moves through space towards us.  

Actually we could have argued for this in an even simpler way without referring to the Hubble law: 

we again as a starting point looks at the non-relativistic Doppler shift formula from above: 

∆𝜆

𝜆
=

𝑣

𝑐
  

We multiply both 𝑣 and 𝑐 by ∆𝑡 – the time the light uses to pass from one galaxy to the next (nearby) galaxy 

that is moving away from us at the velocity 𝑣: 

∆𝜆

𝜆
=

𝑣∙∆𝑡

𝑐∙∆𝑡
  

The distance between the galaxies is 𝑠 = 𝑐 ∙ ∆𝑡 and the distance between the galaxies has increased by 

∆𝑠 = 𝑣 ∙ ∆𝑡.  Therefore we can conclude: 

∆𝜆

𝜆
=

∆𝑠

𝑠
  

The relative growth in wavelength is equal to the relative growth in distance. From this we conclude (as 

argued above) that the wavelength and the distance between the galaxies are proportional: 

1 + 𝑧 =
𝜆0

𝜆𝑒
=

𝑠(𝑡0)

𝑠(𝑡𝑒)
  

But the distances are proportional to the scale factors according to equation (1). We therefore end up 

having shown equation (18) for the redshift once again. See ref. 5. 

In the Milne universe where we can apply both GR-coordinates and SR-coordinates to the whole Universe it 

is evident that even the largest redshift can be viewed as a single Doppler shift. As we argued in the section 

relating to the Milne model. See ref. 7.  

Pedagogical advantages of the Doppler explanation 
As argued above there is no reason to implement a special principle in cosmology a la ’the space is 

expanding – and the waves expands with it’ if we want to derive the redshift formula (18). We only need 

the non relativistic Doppler formula – with repeated usage along the path of the light from emitter galaxy 

to observer galaxy. Actually it may be more correct to say that the light waves are stretched continuously 

by Doppler shifts as the distances expands. 

Using our reasoning from above we can avoid sentences like: ’the galaxies are not really moving – even 

though the distances between then are growing. It is just the space between them that is expanding’  

We have though introduced a coordinate system where galaxies following the Hubble flow have non-

changing coordinates. But the reason for these non-changing coordinates is that these coordinates are 

comoving coordinates! Not surprising they do not change. The time dependence of the distances is 

contained in the scale factor 𝑅(𝑡) in equation (1). It means that the galaxies are actually moving when we 

use the proper distance as the coordinate of the galaxy. And the galaxies are in free fall in the cosmological 

gravitational field.  

You have been driving too fast in your car and the police have measured your speed using a Doppler laser 

gun. The laser gun showed that your speed was 120 km/h but you were allowed only to drive at the speed 

of 50 km/h. You tell the police: ‘It was not my car that moved too fast – it was the space between the laser 
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gun and the car that expanded too fast. My car has a non-changing commoving coordinate as you can see – 

I have painted it myself on the side of the car – it reads 17 km. No change in my commoving position. 

Therefore I cannot accept the fine. I was not moving at all’. The police will probably give you an extra fine 

for trying to explain away your crime. The movement was real – even though your commoving coordinate 

did not change. 

In the general theory of relativity it is the matter and its movements that generates the gravitational fields 

and thereby the geometry of spacetime. And the geometry of spacetime ‘rules’ the movement of the 

matter. The space is not an independent actor dragging the matter along, as the balloon model could imply.  

Calculations shows that a galaxy not following the Hubble flow will not just join the Hubble flow 

immediately. The galaxies are in free fall in the cosmic gravitational field no matter whether they follow the 

Hubble flow or not. Newton rules. See ref. 8. 

- ” This (the examples in the article) have proved that ‘expanding space’ is in general a dangerously flawed way 

of thinking about an expanding universe” - Peacock 2010 

This does not mean that there is a discrepancy between the Doppler explanation and ’space expanding’ 

explanation when it comes to explaining the redshift equation (18) as the ’space expand’ explanation is 

introduced to ‘explain’ this equation. But pedagogically it is unfortunate to talk about movements that are 

not real movements. And also unfortunate to introduce a ’space expands’ explanation to explain the 

redshift equation (18) when it is not necessary.  See ref. 3, 4, 7, 8, 10. 

Using the ’space expands’ explanation to ‘explain’ the redshift equation (18) also gives you the problem of  

why you can use the Doppler formula if the redshift is small.  

Another advantage of using the Doppler explanation is that questions like ’if space is expanding why is the 

earth not expanding too? And what about the atoms? The Solar System? The Milky Way?’ These questions 

will not naturally pop up when you use the Doppler explanation.  

In more textbooks of physics you see a description of the cosmological redshift divided in two. In the 

nearest part of the Universe the Doppler explanation involving real movements of the galaxies is applied. 

But on larger scales it’s the space that is expanding (and not the galaxies that are moving – they are carried 

away by space expansion). 

To this description you may ask: at what redshift does the space expansion take over?  

A more serious consideration to this description could be: we send a series of cosmic explorers to the 

galaxies where the light has passed at an earlier time. These explorers ask the local observers along the 

path of the light how they did experience the redshift of the passing light to find out whether they have 

experienced that space was expanding. And everywhere they get the answer: we saw a Doppler shift in our 

vicinity. In the same way that we on earth sees the redshifts in our vicinity. And this observation is by the 

way in accordance with the cosmological principle: the expansion looks the same no matter from where 

you experiences it.  If the expansion gives rise to a Doppler shift on short distances the explanation is the 

same on every part of the path of the light. So we are led to the view that the redshift is a series of Doppler 

shifts – Doppler upon Doppler upon…   

The ‘blowing up a balloon’ model and the ’raising raisin bread dough’ model of the expansion of the 

Universe should not be taken too literally – the ’medium’ does not ’pull’ the ’galaxies along as a kind of new 

ether. In the Universe the galaxies (or maybe more correct: groups of galaxies) are in free fall in the cosmic 

gravitational field governing the movements. But the models are usable in explaining some aspects of the 
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expansion. As e.g. there is no center of the expansion (even though the balloon model could be misleading 

here), usable in illustrating of the Hubble law and usable in illustrating how the waves are stretched in the 

expansion - even though the models does not give an explanation of why the galaxies moves as they do or 

how the redshift of the wavelengths happens.  

Ref. 1: https://arxiv.org/abs/1807.06205 
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