- fra www.borgeleo.dk

¹³⁷Ba^m – henfald og halveringstid

Af Børge L. Nielsen, Stenløse gymnasium og HF, bln@post4.tele.dk

Mange har i tidens løb lavet øvelsen med bestemmelse af halveringstid med denne kilde, der dannes ved et β^- -henfald af ¹³⁷Cs. γ -energien for den eksiterede tilstand i ¹³⁷Ba er 0,662 MeV. Tilstanden betegnes som metastabil, m. Hvorfor er denne halveringstid så lang? Hertil er en bemærkning om enkeltpartikel-modellen for atomkerner på sin plads: i denne model bevæger nukleonerne sig i et sfærisk middelpotential fra de øvrige nukleoner, se neutronenergier for orbitaler i dette potential i figur 2. Hvis kernen har et ulige neutrontal og et lige protontal som her, er kernens impulsmoment og paritet bestemt af den uparrede neutron.

Figur 1: Henfaldsskema for ¹³⁷Ba^{m.}

Henfaldet ovenfor kan med rimelighed beskrives som en neutronovergang, den uparrede neutrons orbital har i begyndelsestilstanden kvantetallene h_{11/2}, men en neutron fra den fyldte d_{3/2}-orbital oven over (i energi) besætter h_{11/2}-tilstanden, og derved er den uparrede neutron nu i d_{3/2}-tilstanden! Begyndelsestilstanden h_{11/2} er den, der bliver ledig ved β -henfald, hvor en neutron "skifter side" og omdannes til en proton.

Man kan spørge, hvorfor det netop er neutronen i denne $h_{11/2}$ -tilstand, der henfalder til protonen ved β -henfaldet eller, hvis henfaldet går direkte til grundtilstanden af ¹³⁷Ba, at det er en d_{3/2}-neutron, der henfalder til en proton.

Svaret er, at disse neutronorbitaler har højere energi end den ubesatte protontilstand med lavest energi. Neutronenergierne kan ses på figur 2. Benyt A = 137, og at neutrontallet N = 82. Her er neutronorbitalen $1d_{3/2}$ netop fyldt op i ¹³⁷Cs. Dog ligger $d_{3/2}$ over $h_{11/2}$ -tilstanden, hvilket er modsat af, hvad figuren viser.

N = 82 er et såkaldt magisk tal, en særlig stabil neutronkonfiguration, jf. kemiens ædelgasser. Den sfæriske enkeltpartikelmodel er kun brugbar for kerner, der har neutron/protontal i nærheden af de magiske tal 2, 8, 20, 28, 40, 50, 82, 126. Langt fra disse tal er kernen ikke sfærisk!

Der altså tale om et stort skift i impulsmoment for neutronen, et skift på hele $\frac{11}{2} - \frac{3}{2} = 4$. Desuden er overgangen af magnetisk natur (neutronen er en lille magnet), en såkaldt M4-overgang med paritets-skift. Disse forhold – sammen med den relativt lille overgangsenergi – forklarer, at overgangen har ringe sandsynlighed pr. tid og dermed en lang halveringstid.

Et estimat af elektriske overgange E1, E2,... og magnetiske overgange M1, M2,... er givet ved Weisskopfs estimater for enkeltpartikelovergange i tabel 1. Benyttet på den aktuelle kerne finder man

$$k = 3, 3 \cdot 10^{-6} A^2 \cdot E^9$$

= 3, 3 \cdot 10^{-6} \cdot 137^2 \cdot 0, 662^9 s^{-1} = 0,0015 s^{-1}

og dermed estimatet

$$T_{\frac{1}{2}} = \frac{\ln(2)}{k} = 460 \,\mathrm{s} = 7,6 \,\mathrm{min}$$

hvor den eksperimentelle værdi er 2,552 min. Altså et rimeligt estimat! Det bemærkes, at havde overgangen været en E2-enkeltpartikelovergang – der naturligvis ikke kan give spin-skift på 4 – med den samme energi, er estimatet for halveringstiden 4,8·10⁻⁸ sekunder(!)

Langtlevende isomertilstande svarende til ¹³⁷Ba^m finder man også i ¹³⁹Ce, hvor $T_{1/2} = 54.8$ s, $E_{\gamma} = 0.754$ MeV og i ¹³⁵Xe, $T_{1/2} = 15.3$ min, $E_{\gamma} = 0.527$ MeV m.fl. – som alle også sker som M4overgange. Check evt. selv, hvor godt estimaterne fra tabel 1 passer med disse halveringstider. Begyndelses- og sluttilstand har samme kvantetal som i ¹³⁷Ba^m.

Data kan f.eks. findes på

- ie.lbl.gov/
- www.cc.jyu.fi/~jrop/fyslab/fys207-4.html

Figur 2: Neutron-orbital-energier som funktion af massetallet A. Neutron-orbitalernes energi er beregnet i et sfærisk middelpotential frembragt af kernens øvrige nukleoner. (Kilde: Bohr og Mottelson: Nuclear Structure bind I, side 239, W.A. Benjamin, Inc., 1969)

Overgang	Navn på overgang	Impulsmoment L_{foton}	Paritetsskift	<i>k</i> i s ⁻¹
E1	Elektrisk dipol	1	Ja	$1,0\cdot 10^{14}A^{2/3}E^3$
M1	Magnetisk dipol	1	Nej	$3,1 \cdot 10^{13} E^3$
E2	Elektrisk kvadrupol	2	Nej	7,4 $\cdot 10^7 A^{4/3} E^5$
M2	Magnetisk kvadrupol	2	Ja	$2,2 \cdot 10^7 A^{2/3} E^5$
E3	Elektrisk octupol	3	Ja	$3,5 \cdot 10^1 A^2 E^7$
M3	Magnetisk octupol	3	Nej	$1,1 \cdot 10^{1} A^{4/3} E^{7}$
E4	Elektrisk hexadecapol	4	Nej	$1,1 \cdot 10^{-5} A^{8/3} E^9$
M4	Magnetisk hexadecapol	4	Ja	$3,3.10^{-6}A^2 E^9$

Tabel 1. Estimater af overgangssandsynligheder k pr. tid for forskellige multipolordener L som funktion af massetal A og overgangsenergi E i MeV.