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1. Introduction 

Stars and gas-clouds near many galaxy-centers show great velocity-dispersions, and this fact is 

taken as an indication of the existence of supermassive (i.e. masses in the range from millions to 

billions of solar masses) black holes. The gravitation from these massive black holes is the reason 

for the large velocities of the stars and clouds near the galaxy centers. Also the long radiojets seen 

emanating from many galaxy-centers are usually taken as a sign of the presence of massive, rotating 

black holes, the rotational-axes assumed to be  the direction of the dual jets. Black holes are 

considered to be the central powerhouse in actice galaxies (AGN).  

In several cases the velocities of the stars nearest to the center of the galaxies exceeds 1000 km/s – 

nevertheless the distance from the stars to the proposed black hole is often so great, that Newtonian 

mechanics is certainly good enough as a first approximation – and allows a determination of the 

gravitational mass of the central mass – no matter the nature of this. If the velocities or the velocity-

dispersions shows a Keplerian signature (vel. proportional to r 
- 0.5

 where r is the distance to the 

center), a mass of the central object can be determined. 

The central mass observed in the center of The Milky Way coinciding with the radio-source 

Sagittarius A* gives the best possibilities to study how a black hole behaves – if it is indeed a black 

hole. The discovery of this radio-source was done in the year 1974 by Balick and Brown at the 

NRAO-interferometer at Green Bank (ref.11). Only future observations, possibly VLB interfero-

meter-observations – will tell us the details of the beast, for example the direct observation of 

gravitational lensing of NIR-radiation or radio waves coming from behind the heavy central mass or 

maybe a black shadow showing directly the black hole. This will probably be possible in a few 

years. 

This report will describe parts of the current understanding of the massive central mass and the 

derivation of the mass and the possible angular momentum of the object. And try to answer the 

question: is it really a black hole? 

 

2. The apparent proper motion of  SgrA* 

The proper motion of the radio-source SgrA* has been measured in radiowaves with respect to 

background extragalactic reference frame (ref.17). The result is: 
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where (l*,b*) is the galactic coordinates of SgrA*. It can be seen that the main part of the motion is 

along the galactic plane. When combined with measurements in NIR (ref. 18), it can be shown that 

almost all of this apparent proper motion can be ascribed to the motion of the Sun  - where the Sun 

participates in the differential rotation of the Galaxy (220 km/s) and has its own peculiar motion 

relative to the local standard of rest. The z-component of the Solar peculiar motion relative to the 

local standard of rest is 7.2 +/ 0.4 km/s. The tangential velocity of the Sun in the galactic plane is 

20 km/s. The assumed distance to the galactic center is 8,0 kpc, as confirmed by the astrometric 

measurements of the stellar orbit of the star S2. After removing this Solar motion from the 

measurements, it is shown that SgrA* moves with 5 +/3 km/s perpendicular to the galactic plane. 

The motion of SgrA* in the galactic plane is more insecure – the reason being the relative insecurity 

of the local standard of rest in the galactic plane (10 – 20 km/s). This relative slow motion of SgrA* 

relative to the galactic center confirms that SgrA* is the dynamical center of the Galaxy. 

Measurements of the proper motion of SiO-stars (stars associated with SiO – maser emission) at 

both radio and infrared wavelength in the central cluster shows that the central star cluster moves 
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with SgrA* within 40 km/s per coordinate-axes, or 70 km/s for the 3-dimensional motion. This is 

small compared to the spacevelocity of S2 which exceed 5000 km/s at the pericenter of its orbit. 

The radioposition of SgrA* is within 10 mas of the focus (graviational center) of the S2-elliptical 

orbit.  

Thus there seems to be good evidence for the postulate that SgrA* is very close to the dynamical 

center of the Milky Way - or is coincident with the center. If the central mass is a massive black 

hole, the radio and infrared source are expected to be very close to the hole, probably within 10 

Schwarzschild-radii (associated with an accretion disk or maybe a jet). 

 

3. Determination of the Mass of the Central dark Object 

The most direct way to determine the mass of the central object in the Milky Way-galaxy is to 

observe stellar orbits generated by the gravity of this object. And then use Kelpers 3. law on these 

stellar orbits to determine the mass of the central object. 

In fig. 1 we see on 

the left inset a 

picture of the most 

central parts of the 

Milky Way in NIR. 

The center is com-

pletely blocked in 

visible light becau-

se of the vast 

amounts of dust 

and gas in the line 

of sight (lying in 

the galactic plane) 

towards the center 

as seen from the 

Earth. However, in 

radio, NIR and X-

rays it is possible 

to penetrate this barrier. 

The scale of the picture is shown, the width is approximately 2’’.  

The picture was taken using the NAOS/CONICA camera/adaptive optics instrument on UT4 on the 

VLT (40 mas resolution). The Radiosource SgrA* is marked with an arrow and colored blue. 

The right inset shows the orbital data and best Keplerian fit of the orbit of  S2 around SgrA* (circle 

with cross). The positions from 1992 to 2001 are measured by the NTT-telescopes SHARP-camera, 

whereas the positions in 2002 are measured by the NAOS/CONICA instrument on UT4. The speed 

of the star reached over 5000 km/s in 2002. 

The analysis of the stellar orbit gives the following parameters (Schödel et al. 2002, ref.1): 

 

Table 1: Derived orbital parameters for the star S2 

 

Parameter Value Formal 

error(1 ) 

Astrometric 

error 

Mass of black hole M (10
6
MSun) 3.7 1.0 1.1 

Period P (years) 15.2 0.6 0.8 

 
Fig. Fejl! Ukendt argument for parameter.: 10 years of Observations of 

the Orbit of the Star S2. The figure has been taken from from Schödel 

et al. 2002, 2003. 
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Time of pericentre passage (year) 2002.30 0.01 0.05 

Eccentricity e 0.87 0.01 0.03 

Angle of line of node (degrees) 36 5 8 

Inclination i (degrees) +/ 46 3 3 

Angle of node to pericenter (degrees) 250 4 3 

Semi-major axis a  (mpc)   4.62 0.39 0.15 

Separation at pericenter rmin (mpc) 0.60 0.07 0.15 

 

The formal errors stems from the orbital fits, the astrometric errors are due to the 10 mas 

astrometric uncertainty. The distance to the galactic centre is assumed to be 8 kpc. The angle of the 

line of nodes is measured anticlocwise relative to the direction North on the figure. The angle from 

node to pericenter is measured from the node in the north-east quadrant in the direction of motion of 

S2. The sign of the inclination-angle is not known, because no line-of-sight-motion are used in the 

analysis (these measurements has only been possible later). 

The semi-major axis projected on the sky would be 0,119’’, and therefore 

 

(1) pc 46100.0m1042.1dayslight5.5AU952kpc8''119.0 14 a   

 

in accordance with the values given in table 1. And the mass of the black hole follows easily 

(Keplers 3. law): 

 

(2) Sun
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This method is the most direct for the determination of the mass of the black hole, therefore there is 

great hope, that the incrising resolution and sensivity of the measurements with the NAOS-

/CONICA instrument will make it possible to measure even orbits of faint starts closer to SgrA* in 

the coming month and years. Infrared interferometry using the VLT, the Keck and the Large 

Binocular Telescope will give even better resolution, down to a few mas – making it possible to 

study relativistic motion close to the black hole. 

The Schwarzschild-radius of the hole (assuming it to be non-rotating) is given by 

 

(3) AU 0.073 km1010.9km95.2103.7km95.2
2 66

Sun

2


M

M

c

GM
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Here G is the gravitational constant, c is the vacuum speed of light. The star S2 does not come close 

to the Schwarzschild-radius of the hole, actually the closest approach is 

 

(4) ggg

g

rrr
r

r
r 1700

km1010.9

km1009.30006.0
6

13

min
min 




  

 

this is far from the point where relativistic effects on the orbit will be visible within the time of a 

few orbital periods – and the tidal effects on the star itself will also be small (the mass of the star is 
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approximately 15 MSun, the radius app. 7 RSun). It is of course easily shown, that r-min also can be 

written as 

 

(5) pc 0.00060lighthours17AU124min r  

 

If the infrared interferometric technic can give a resolution of  let’s say 1 mas, we can study 

motions as close as  

 

(6) lighthours1,1110AU 8kpc8''001.0  grr  

 

At this distance the period P (measured by a distant observer) for circular motion around the black 

hole is given by 
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The speed (relative to the speed of light) in this orbit is 

 

(8) 
   

068.0
21102

1

12

1








grr
  

 

implying that motion of the star is almost in the relativistic regime. 

It should be noted, that the expression (7) is valid both in Newtonian gravitational physics (Keplers 

3. law), but is also valid for circular motion in the Schwartzhild-metric. The expression (8) is valid 

in the Schwartzhild-metric. The speed is here defined as length per unit proper time of an observer 

at rest at the point where the motion happens. Had we used Newtonian gravitational physics, and 

divided the speed by the velocity of light c, the result would be 0.067 – very close to the result (8). 

 

Fig. 2: orbits of fast-moving stars near SgrA* - see ref. 9 
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Not strange, as we are still relative far from the black hole. 

If there are stars that close to the black hole, it will be possible to follow such stars through many 

orbital periods, and relativistic effects such as the advance of the pericenter of the orbit (if the orbit 

is not a circular orbit, of course!!), the dragging of inertial frames in case of a rotating hole, the 

asymmetric movement of light around a  rotating black hole etc. 

We might ask the question: how close can a star come to the black hole before it is disrupted by 

tidal forces from the hole? A rough estimate can be calculated using the formula (ref. 19) 

 

 3

*

*disruption tidal
M

M
Rr   

 

If we use the estimated mass and radius of the star S2 we get 

 

 gSunSun rRR
M

M
Rr 28439

15

107.3
7 3

6

3

*

*disruption tidal 


  

 

thus the star S2 is not at all close to the limit where it will be destroyed by tidal forces, as the closest 

approach rmin is 1700 rg. 

It should be mentioned, that the orbits for other stars has been measured as well. See fig. 2. 

However, the orbital parameters of these (S1, S8, S12, S13, S14) are not yet precise enough to give 

a much more precise determination of the enclosed mass compared to the orbital parameters of S2. 

The green orbit for S2 are due to a new analysis of the data for S2 – where also the focus of the 

orbit was taken as 

free parameters – 

giving the red 

cross as result. As 

can be seen on the 

figure the position 

of this is well 

inside the black 

circle giving 

SgrA* position 

determined by 

radio-metric 

measurements( 

10 mas). Future 

astrometric mea-

surements of the 

orbits will no 

doubt give a more 

precise value for 

the enclosed 

mass. The 

analysis above 

gives the estimate 

SunM6105.04.3 

 

Fig. 3: enclosed mass measured from the galactic center (ref. 9) 
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 for the enclosed mass. In accordance with the value given in table 1. No radial motion observations 

are included in the analysis. If such observations are made, it will be possible to make an analysis 

using a as a free parameter – giving a measure of the orbit independent of the distance to the 

galactic center. And of course also giving a value for this galactic center distance. 

Actually measurements of precisely this kind have already been made! (ref. 15 and 16). Four 

measurements of the radial motion of the star S2 have been made in 2002.4177, 2002.4205, 2003.21 

and 2003.35 (using H I  Br- 2.1661 m and He I 2.1126 m lines). With these absolute values of 

velocities corrected for the motion of the earth relative to the galactic center it is possible to analyse 

the orbit of the star without reference to the galactic center distance – but it is as mentioned above 

also possible to derive the galactic center distance from the analysis. The sign of the inclination-

angle of the orbit can also be found.  And it shows that the star S2 is behind the focus of the ellipse 

at pericenter. Thus it is rotating against the general galactic rotation.  This fact taken together with 

the early spectral type (08 – B0 main sequence star, mass in the range 15 – 20 solar masses) gives 

an age of the star of not more than 10 mio. years – and makes it diffucult to understand how the star 

formed in a region with strong tidal forces. And the young age gives only a short time for migration 

from bigger distances toward the center. 

The derived new parameters can be seen in table 2. It should be noted that the mass at the focus of 

the ellipse is not a fit-parameter, but is derived from the 3. law of Kepler (as in eq. (2)). The galactic 

center distance R0 is taken as a free parameter in the fit. The position of the focus of the ellipse is 

given in a commen infrared astrometric frame – as opposed to the radiometric frame. There is an 

uncertainty between the infrared and the radio astrometric frame of +/ 10 mas. 

 

Table 2: Derived orbital parameters for the star S2 (ref. 16) 

 

Parameter Value Uncertainty 

Mass of black hole M (10
6
MSun) 3.65 +/ 0.25 

Period P (years) 15.559 +/ 0.337 

Time of pericentre passage (year) 2002.339 +/ 0.011 

Eccentricity e 0.880 +/ 0.006 

Angle of line of nodes (degrees) 45.3 +/ 1.5 

Inclination i (degrees) - 47.9 +/ 1.3 

Angle of node to pericenter (degrees) 245.1 +/ 1.6 

Semi-major axis a  (mas) 0.1200 +/ 0.0026 

Position of focus of elipse x0 (mas) 2.2 +/ 1.2 

Position of focus of elipse y0 (mas) - 3.2 +/ 1.1 

R0  galactic center distance (kpc) 7.99 +/ 0.38 

 

With improved orbital elements for other stars than S2 it will be possible to determine the mass of 

the central object and the distance to the galactic center with even better precision – possibly 

making the distance to the center of the galaxy the best known distance in the cosmic distance 

ladder. It should be noted that the value R0 is in good agreement with most recent distance-

estimates. 
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The enclosed mass as a function of the distance to the galactic center can be seen in fig. 3 (ref. 9). 

It can be seen on this figure that the data are consistent with a central point-mass  with a mass (blue 

curve) of  SunM61015.087.2  . And that there is quite ”emty” space from the central mass out to 

the distance 0.2 pc. The estimate from the modelparameters used in making the blue graph tells us, 

that there is at most a few hundred Solar masses inside the pericenter of S2 – stars from the central 

cluster of stars surrounding the galactic center – apart, of course from the central point-mass. 

Calculating the sky-projected velocity-dispersions (from proper-motion measurements and the 

galactic center distance) of stars at different sky-projected distances from SgrA* , these velocity-

dispersions follow a Keplerian signature, being proportional to r
 0.5

 where r is the projected 

distance to SgrA*. The movements of the stars therefore seems dominated by one central mass – the 

socalled enclosed mass - as long the projected distance to SgrA* is below 0.1 pc (ref.36). 

We will not go into many more details of mass-determination of the central cluster summarized on 

figure 3. But the pericenter of the star S2 is also here seen to be important in the analysis. The 

enclosed mass stays constant downto at least this pericenter-distance. The pericenter of the star S14 

are closer to the central mass than the pericenter of S2. But the precision of the orbital elements are 

not nearly as good as for S2. 

 

Fig. 4: NIR light-curves for SgrA*-flares(VLT), blue curves, ref. 10. SgrA*-data are the 

filled blue circles – red datapoints are lightcurves for the nearby star S1. Time is relative 

to UT-time listed above each graph. The blue-graph power-spectrum shows a peak at a 

period of 16.8 +/ 2 min. in the SgrA*-flux. 
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4. Determination of the angular momentum of the black hole 

It can be shown, that not all circular orbits in the Schwarzschild -metric are stable – as opposed to 

the case of  Newtonian theory. The innermost stable circular orbit (ISCO) in the Schwartzhild-

metric is located at the r-value 

 

(9) gISCO rr 3  

 

and the period of this orbit (as measured by a distant observer) is given by the expression (7): 
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The speed given by (8) is 50% of the speed of light! 

Thus, if we receive periodic signals from regions close to the black hole, its is expected, that the 

shortest period from orbital motion of gas in a accreation-disk should be approximately 28 min.  

In fig.4 we see lightcurves of flares in the near infrared coming from an area very close to the 

source SgrA* (ref.3,10) . 

A period of approximately 17 min can be seen in the power-spectrum. If this signal is understood as 

radiation from gas circulating the black hole, the period is clearly too short compared to the 28 min.,  

calculated above for a non-rotating black hole with the mass 6107.3   solar masses. 

This could be a sign of a rotating black hole, if this period is understood as the period of the 

innermost stable circular orbit.  

But how fast should the black hole rotate to give this period of 17 min? 

To answer this question we must turn to another metric (other than the Schwarzschild), namely the 

Kerr-metric for a rotating black hole. 

This metric is more complicated than the Schwarzschild-metric, see app. 1 for some details. 

The important thing here is the period of circular motion, especially the innermost stable circular 

orbit. 

Circular motion in the equatorial-plane is possible, if the angular velocity dtd   satisfies the 

following equation: 

 

(11) 022  r

tt

r

t

r    

 

where the angle  is the rotation-angle around the symmetry-axes, t is the time as measured by a 

distant observer. The -symbols are the Christoffel-indices which can be calculated from the metric 

given in appendix 1. 

The result is 

 

(12) 022 
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and if we use the metric from app.1, we get 
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(13) 0
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2
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The solutions of this equation is 

 

(14) 
arr 




2

1
  

 

where the plus-sign should be used for rotation in the same direction as the hole (co-rotation), and 

the minus-sign for the opposite direction. The unit for  in (14) is grc . 

The radial parameter r is measured in units of gr  as given by (3), and the rotational parameter a (not 

to be confused with the semi-major axes of the star S2!!). a is the angular momentum per unit mass 

of the hole divided by c, and is measured in units of gr . 

However, stable circular orbits are not possible for all values of r (see e.g. James B. Hartle, 2003 

p.316). 

The criterion of stability against small changes in the r-value gives a connection between a and r, 

we will here limit ourselves to the co-rotation-solution.  

It is not difficult to show (using the ref. above), that you have to solve the following equation to get 

the innermost stable circular orbital radial parameter (units: rg for r and a): 

 

(15) 
r

a
r

a
rr

1
33

2

   eq. for r ISCO 

 

Solving this eq. gives the functional dependence between r and a and we can insert the values in 

(14) and finally find the relation between the period P and the rotational parameter a. 

 

(16) 





2
P  

 

We will here limit ourselves to numerical solutions, see app. 2, 3. The numerical solution was done 

by the author (of this report). The relation between a and P is of course valid for all rotating Kerr-

black holes – taking into account the appropriate units. What you should know are the mass of the 

black hole (used to calculate rg ) and the period P for the innermost stable circular orbit in the 

direction of the rotation of the hole. This will typically be seen in measurements of the intensity of 

the radiation from an outbreak stemming from gas falling into the black hole. The gas will circulate 

the hole and loose angular momentum through friction and other mecanisms. When we have got the 

period then we can use the graph to read of the value of rotational a – in units of rg . But now back 

to the actual case: 

To use the (a,P) – graph we must know the value of P. The unit for this is crg  and this was 

already calculated in (7) to 36 sec. 

 

(17) 28
s36

min.17
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cr

P

g
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Using the (a,P)-graph and the (a,r)-graph we finally find 

 

(18) gra 25.0  grr 1.2  

 

and this is 50% of the maximum-value for the angular momentum per unit mass. A very fast 

rotation. And it is likely that the effective generation of NIR happens at a little outside the 

innermost stable circular orbit (see ref.10) – therefore the value of a in (18) is probably a minimum 

value. (Warning: in many (most?) texts the unit of a is taken to be only gr
2
1 ). 

If we take a lower limit of the mass of the hole: SunM6105.04.3   we can again calculate rg and P 

from eq. (17), and using appendix 3 we get a minimum value of a :  amin = 0.15 gr . 

The rotational period of the hole itself is given by (units for a and  as mentioned above) 

 

(19) 
  2

2
1

2
1 a

a

r

a
hole


  

 

In this formula, the parameter r is the radial parameter of the event-horizon in the equatorial-plane 

of the hole. 

Plugging in the value of a given by (18), we get hole  = 0.27. The corresponding period is 14 min, 

analogous to (16). And not the 30 seconds, reported elsewhere (ref.6). 

It should be noted however, that it would be nice to see this 17 min. period in more measurements 

in NIR, and maybe also in X-ray-intensity measurements before we can be sure that this period 

represents the period of the innermost stable orbit. (See comments below) 

Actually it has now been shown, that there is a connection between flares in NIR and X-ray, see ref. 

7. In this reference, the radiation is described as due to heated and accelerated electrons, and the fast 

flares due to syncrotron-radiation, all stemming from the accretion-disk near the black hole. This 

would suggest a high degree of polarization of the radiation, as it is indeed seen in NIR. 

A relevant question to the above analysis would be: could there not be other processes that could 

generate a period of 17 min.? 

And the answer is probably no! Other processes that could generate periodic variations in the 

intensity of the NIR radiation are acoustic waves in a thin disk, orbital node precession of the 

acretion disk (Lense-Thirring-precession). However these are expected to be too slow to explain the 

observed period (see again ref. 10). 

 

According to Aschenbach et al. 2004 (ref.35) XMM and Chandra-measurements of flares in X-ray 

actually shows a set of periodic or quasiperiodic oscillations, being in agreement with the periods 

seen in NIR. These periods (seen in at least two spectra) are approximately 100s, 219s, 700s, 1150s 

and 2250s. The 1150s period is tentative being identified as the NIR-period. Aschenbach notes that 

there are four cyclic gravitational modes associated with a black hole accretion-disk, namely the 

Kepler-frequency (eq. (14)), the vertical and radial disk-perturbation frequenciesand finally the 

Lense-Thirring frequency equal to the difference between the Kepler- and the vertical-perturbation 

frequency. If the following identifications are made (the only combination that gives a consistent 

determination of the black hole mass and rotational parameter): 

 

 219s-period:  Kepler-period at the innermost stable circular orbit 

 

 692s-period:  Vertical-perturbation-period at the innermost stable circular orbit 
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 1117s-period: Radial-perturbation-period at the r-value giving the minimum radial-perturbation-

period 

 

then the Lense-Thirring-period is 320s – one of the other periods found in the NIR-powerspectrum 

of fig.4. Using the relations between the different periods/frequencies (expressed by the mass M and 

the rotational parameter a of the black hole and the value of the radial parameter r where the 

oscillation occurs) it is possible to predict the black hole mass and the rotational parameter of the 

black hole: 

 

   Sun

61019.0/12.072.2 MM   

 

 0037.0/0012.04970.0 a  

 

Thus the black hole is rotating allmost as fast as possible (max-value of  a is 0.5). And the mass is 

somewhat lower than the value given in table 2.  

It should be noted however, that it has not been shown that all four frequencies are expected to 

show up as a physical frequency in the power-spectrum – and the identifications of the measured 

spectral-periods to the Kepler-period, vertical- and radial-periods – taken together with the the value 

of r where the oscillation occurs -  seem somewhat arbitrary. More measurements of strong flares in 

X-ray and NIR – and a better timeresolution in NIR – are probably needed to resolve these ques-

tions. 

 

 

5. What is the real size of the central dark object of the Milky Way? 

Let us assume, that the central object is a black hole. In that case one might think, that the 

Schwarzschild-radius (or diameter) would give the size of the dark area, we might expect to see - if 

our telescopes had the right angular resolution. But that is not entirely correct. We must remember 

that gravity from the hole will bend lightrays and in some cases absorb lightrays/photons. Given the 

Schwarzschild-metric its possible to show, that the black hole has a circular absorption-cross-

section for photons (or extremely relativistic particles) given by 

 

(20) 2

4

27
gabsorption r    absorption-cross-section for photons 

 

It is here assumed that the hole is non-rotating. This corresponds to an impactparameter for the 

photon of 

 

(21) gg rrb  60.2
2

33
 

 

A photon with this impact-parameter will enter a (unstable) circular orbit around the black hole. Is 

the impactparameter smaller the photon will approach the event-horizon and never be seen again. 

So given a background of some stars or other sources of electromagnetic radiation behind the black 

hole, we will see a dark circle with a diameter of 2b, or  - if we put in the numbers (see (3)): 

 

(22) diameter of dark circle = 2b = 5.20 rg =  0.38 A.U. 
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Seen from the earth the angular resolution required to dissolve this is 

 

(23) minimum required angular resolution = as
r

b

GC

47
pc8000

AU38.02
  

 

It should be noted that this size is a shadow-size – up against the radiation coming from behind the 

black hole – not the radiation from an acretion-disk or a jet which might also extend to the front of 

the hole, depending on the unknown orientation of the rotational-axes of the black hole. 

It might seem impossible ever to reach this kind of resolution – but how close are we today? 

New VLBA-observations at 43 GHz (7 mm wavelength) show, that the radio-emission from the 

central object comes from a region of size 1.8 AU (see ref. 13). This corresponds to 24 +/ 2  times 

the Schwarzschild-radius of the hole. 

This is only 5 times greater than the expected value for diameter of the black circle given by (21) – 

so we are actually very close to seeing the beast - if it is a black hole! 

At greater wavelength the radio-source seems much bigger – a fact that can be explained by the 

”fog” that the radiowaves has to pass in their way to the telescope. This ”fog” is due to scattering by 

turbulent interstellar plasma along the line of sight. – and has nothing to do with the size of the 

source. This scattering obeys a power-law where the size of the source grows proportional to the 

square of the wavelength. With the latest measurements using smaller wavelength however, the size 

of the source is greater than what would be expected from the scattering-law-scaling – and therefore 

the intrinsic size of the source can be derived. The longest baseline used in the experiment was 2000 

km. 

 

The values of the following table is taken from ref. 13. 

 

Table 3: Intrinsic Size of the Major Axis of SgrA* 

 

Wavelenght (cm) Measured Size (as) Scattering Size (as) Intrinsic Size (rg) 

1.35 2635  +37/-24 2533  +20/-20 72   +15/-11 

0.69 712    +4/-3 669     +5/-5 24   +2/-2 

0.35 180    +20/-20 173     +2/-2 6     +5/-5 

 

It can be seen that the intrinsic size is wavelenght-dependent. This imposes constraints on the 

models that should explain the sources of the radiation. 

If we assume that the mass of the central object is confined within 24 Schwarzschild-radii we get 

for the average mass-density 

 

(24) 
 

32135

3

3
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6

pc101.1AU103.1
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103
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
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The dynamical lifetime of a cluster of objects with this density against internal collissions or 

evaporation would be less than 1000 years – thereby excluding this possibility, making Sgr A* the 

most convincing existing case for a massive black hole (ref. 14). See later for a discussion of the 

nature of the central dark object and the dynamical lifetime of a cluster. 
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6. Radiation from the central massive object 

Measurements of 

the electromagnetic 

radiation associated 

with SgrA* are 

summarized in 

fig.5. Here radio-, 

(upper limits to) IR,  

NIR and X-ray-

measurements are 

displayed.  The 

observed flux-

density S has been 

multiplied by the 

frequency . And 

the luminosity L is 

calculated using the 

formula 

  SDL  24  

where D is the 

distance to the 

center of the Milky 

Way (here taken to 

be 7.94 kpc)- thus 

assuming spherical 

symmetry. The 

measurements has been corrected for extinction and absorption. Error-bars are +/ one stan-

darddeviation. The black triangles denotes the quiscent (that is: ’normal’, slowly varying) radio-

spectrum of SgrA*. Open grey circles denotes upper limits to the IR luminosity. The three X-ray 

data-sets are: black denotes the quiscent state (measured by Chandra X-ray Telescope), red denotes 

the flare seen fall 2000 (XMM) and the light-blue denotes the fall 2002 flare (XMM). Open red 

squares marks the NIR peak-emission, observed in four flares – open blue circles marks the 

deredded H, Ks and L’ – luminosities in the quiescent state. 

A prominent feature of the spectrum in fig.5 is the small amount of luminosity above 10
13

 Hz (note 

that the luminosity has been multiplied by the frequency). 

The flares in NIR and X-ray lasts 30 – 40 minutes and is seen approxemately simultaneously – 

therefore probably requiering a common physical cause (ref. 22). The flares in NIR happens at 

timescales from 10(!) – 100 minutes. Also the variability in X-ray (up to 50 times) is bigger than in 

NIR. The short period in the flares indicate that the origin of these are close to the central object – 

in the case of a black hole scenario close to the innermost stable circular orbit. X-ray flares occur on 

average once a day. The quiscent radiation seems to come from a more extended region (1 arcsec). 

Linear polarization in the sub-mm range have been observed. 

 As argued above, the central object of the Milky Way is very compact – probably a black hole. It is 

therefore natural to try to explain the origin of the electromagnetic radiation from this object using 

models with a black hole in the center.  

Before we enter a few details of the models of fig.5 it is suitable to introduce the socalled 

Eddington-limit. It is defined by equality between gravitational force and radiation-pressure force 

from the radiating object (see e.g. ref. 21): 

 

Fig. 5: the electromagnetic spectrum of SgrA* (ref. 20) 
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(25) erg/s103.1
4

Sun

38

T

p

Edd
M

MmMGc
L 







 

 

where M  is the mass of the black hole, mp is the mass of the proton (associated with the electron!) 

and T is the Thomson cross-section for scattering of photons on electrons. 

In the case of SgrA* we get 

 

(26) erg/s104.7erg/s
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Sun
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In fig.5 several such models have been applied to the data, and the various curves shows varying 

degrees of succes in explaining the observations. 

The abbreviation RIAF means Radiative Inefficient Accretion Flow – a model for the accretion-flow 

and the emission from the source. The luminocity from the source is small in this model: 

 

(27) Edd

810 LL   

 

In the case of SgrA* the luminosity is a factor of 3 less than this limit. The reason for the low 

luminosity could be the small accretion-rate, maybe as small as year/10 Sun

5 M . Another reason in 

the RIAF-model is that the model is inefficient in converting the lost gravitational energy to 

radiation. The RIAF –models describes a hot quasi-spherical rotating accretion flow with viscosity. 
 The radiation is created by a thermal electron population and electrons having a nonthermal power 

law-spectrum. The non-thermal electrons are being accelerated by shocks or magnetic reconnection. 

For the electrons in the non-thermal state a percentage and a power p (numberdensity of electrons 

proportional to the gammafactor of these in the power of minus p) is given in the figure for the 

different models.  

The abbreviation SSC means Syncrotron Self-Compton radiation. Low-energy photons are Comton-

scattered by relativistic electrons to higher energies. This process can explain parts of the X-ray-

emission in the flares. Another part could be pure syncrotron-radiation of the accelerated electrons.  

It is not clear whether the SSC-effect is needed or whether pure syncrotron-radiation from electrons 

accelerated in shocks or magnetic reconnection (like in the Solar flares) can explain the flare-

observations. Or whether syncrotron-radiation from jet-accelerated electrons contributes to the 

energy-spectrum. 

The reason why these flares are visible is probably that the accretion-rate of the black hole is very 

small. At higher accretion-rates (using these RIAF-models) these flares are ’buried’ in the quiescent 

emission.  

The source of the gas that is accreted on to the black hole is probably mass-loss from a cluster of 

stars 10 arcsec from the hole, including blue supergiants - being dominated by IRS 13E which is 3.5 

arcsec from Sgr A* on the sky. The interaction of these stellar winds shocks the gas and heats it to 

temperatures where it emits X-rays. The total mass-loss-rate for these stars is 10
-3

 MSun/year. This is 

much higher than the accretion-rate of the central black hole, the main part probably being 

thermally driven out from the center in stellar winds(ref. 23). The stars in the central cluster seen in 

fig. 2 , right inset are probably main sequence-stars with much lower mass-loss-rate. Spectroscopy 

of one of the stars, S2, suggests that it is a main sequence O/B star, as already noted. The hot gas 
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from the stars can be the source of the diffuse X-ray-emission in the central parsec as seen by the 

Chandra X-ray telescope. 
 

7. Is the SgrA*-source a black hole? 

Now to the million-dollar question: is there a black hole in the center of the Milky Way? And how 

can we be sure? 

Several models have been proposed as alternatives to a black hole. 

One reason to invent such models is to try to avoid the singularity of the black hole.  

Another reason for inventing some of these models is that the Universe seem to contain large 

amounts of dark matter that only manifests itself only by gravitational forces – actually the main 

part of the matter is dark! And it has to be somewhere. So why not also in the galactic centers? 

Several of these supermassive central objects emits very little electromagnetic radiation if compared 

to the Eddington-limit – they are rather dark. 

We will here concentrate on the following alternatives to the black hole scenario: 

 

a) A cluster of non-luminous objects such as brown dwarfs or stellar remnants 

b) A supermassive star of fermions such as neutrinoes 

c) A supermassive star of bosons  

 

A cluster of non-luminous objects such as brown dwarfs or stellar remnants 

Is it possible to put some dynamical constraints on these models? The answer is yes. The reason is 

that such collections of many objects gravitationally bound to each other has a finite probability of 

either evaporate or to collide and form heavier objects (ref. 24). 

If we assume a Plummer-model of mass M (giving the least centrally concentrated model for a 

cluster with a given mass because it has the steepest falloff of the density observed in any 

astrophysical system): 
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where 0 is the central density, 
30

4

3

cr

M





  and rc is the core-radius. It proofs to be useful to 

replace the two parameters 0 and rc by the cluster half-mass and its half-mass-density h (the mean 

density within the clusters halfmass-radius Rh) of the Plummer-model: 

 

(29) ch 3.1 rR    h0 4.4    

  

The evaporation-lifetime against weak gravitational scattering of a cluster of mass M consisting of  

(identical) objects with mass *m   can be shown to be (ref. 24) 
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Here the quantity Mh is half of the mass of the cluster. The other limit to the lifetime of the cluster 

comes from the collision time, here used in a Plummer model and applying the velocity-dispersion 
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of a Plummer-model (the collision time is the characteristic timescale for each star to collide with 

another, taking gravitational focusing into account): 

 

(31) 
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If we take the example given in eq. (24) and assume that the half-density is given by this value, the 

mass of the objects is assumed to be 1.4 Solar masses, the radius of the star 10 km (a neutron star), 

we get from eq. (30) and (31): 

 

(32) yr930andyr1250 collevap  tt  

 

Taking the minimum of these two, the age is clearly inconsistent with the fact that we see the object 

today – unless we are in a very special period of the Universe. We must assume that the cluster has 

existed for a substantial part of the lifetime of the Galaxy – that is 10 Gyr. Thus we can safely(!) 

conclude that the central 

object does not consist of 

neutron-stars! 

In ref. 24 the focus has 

been on exisiting 

astronomical objects. 

That is black holes with 

mass > 3 MSun , neutron 

stars with 

Sun*Sun 34.1 MmM  , 

low mass objects (e.g. 

planets) with 

Sun

3

* 103 Mm   

supported by the pressure 

of atoms, objects with 

masses in the range 

Sun*Sun

3 4.1103 MmM  

 supported by electron-

degeneracy pressure such 

as white dwarfs, brown 

dwarfs (up to 0.09 MSun). 

The radius of the objects 

has also to be known to 

calculate the collision-

time (31). These mass-

radius-relations can be 

found in the reference 24. 

 

Fig. 6:    lifetimes of central clusters of galaxies 
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The authors then calculate the minimum of the two times (30) and (31) for a given half-mass and 

half-density (but with varying astronomical objects). The resulting maximum (for different 

astronomical objects)lifetime max of the cluster can be seen in fig. 6.  

 

The half-density of the central mass of the Milky Way is calculated using the minimum distance of 

the star nearest to SgrA* in 1997. Today we have a better limit on the size of the central mass. If we 

use not the value given by eq. (24), but the closest approach of the star S2 to SgrA* as Rh, we get  
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a value that falls outside the top of the figure but gives an estimated lifetime of the central mass in 

the Milky Way of less than 1 mio. years – clearly an unrealistic short value. This leads to the 

conclusion that the central mass cannot consist of any known sort of astronomical objects. But 

what other objects will give a lifetime of the cluster that is comparable to the lifetime of the 

Galaxy? Actually there is the possibility of small dark holes. If we in the formula (30) set the 

evaporation-time equal to 10 Gyr and also use the matterdensity (33), we find Sun* 000075.0 Mm  . 

Therefore the cluster could persist of small black holes (Schwarzschild-radius less than 22 cm!) 

with mass smaller than this limit. The value (33) – where Rh is equal to the minimum distance of 

the star S2 to the central object – indicates that only half of the mass of the cluster is inside. This is 

in contradiction to the enclosed mass of fig.3 – therefore it would be safe to use a smaller value for 

Rh and thereby getting at higher value of the half-density, as displayed for the model used in fig.3 

(the red dashed curve). The mass of the small black holes making up the cluster will therefore have 

to be even smaller than Sun* 000075.0 Mm  . 

These black holes are not the end-products of stellar evolution. But could be primordial – created in 

an inflatory Big Bang.  

These dynamical considerations leads to the conclusion that only in NGC 4258 and the Galaxy we 

can exclude known astronomical objects as being the only constitutients of the central mass.  

However there are other models of the central mass that avoids the black hole paradigm.  

 

A supermassive star of nonbaryonic fermions (such as neutrinoes) 

This alternative to the black hole scenario has no singularity or event-horizon, consisting of a ball of 

selfgraviting nonbaryonic fermions. These objects of elementary particles may have formed in the 

early Universe during a first order gravitational phase transition (ref.26). The ball of fermions 

’fights’ gravity by the degeneracy-pressure of the constituing particles. 

The massive central object is composed of selfgraviting degenerate neutrinos (or more generally 

nonbaryonic selfgraviting degenerate fermions). The mass of this neutrino can – if the mass of the 

central massive object of M87 (which has been determined to Sun

8103 M ) is to be expained in this 

model and at the same time is the most massive (Oppenheimer-Volkoff-limit) possible object of this 

kind – be determined to be 15 keV (ref.25). This gives a radius of the neutrinoball in M87 of 4.5 rg 

(rg is the gravitational radius of M87), therefore the dynamics of objects orbiting the central mass is 

for greater radii very much the same as in a black hole scenario. 

However, in galaxies with massive central dark masses much less than this, the fermion-ball will be 

considerably greater measured in units of the the gravitational radius if we use the same mass for 

the neutrino. In the Milky Way the radius of the fermion-ball will be 21 light-days – much greater 

than the distance from the pericenter of the star S2 to the gravitational center of the galaxy (only 17 

lighthours). Therefore the orbit of this star will be considerably influenced as compared to the 
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scenario of a central massive black hole. Only a minor part of the mass of the neutrino-ball will be 

inside the pericenter of S2 and the orbit will not be an ellipse (Kepler-orbit), as the amount of mass 

contained in a ball with radius equal to the distance between the star and the center will vary in the 

elongated orbit. And the enclosed mass felt by the star will be smaller than the enclosed mass of 

stars orbiting further away from the center. This is not the case as can be seen in fig.3.  

However, the radius of the fermion-ball can be made smaller by choosing a bigger neutrino-mass. 

Therefore we cannot use this argument to exclude the fermion-ball from the game. But then the 

model cannot be used in the M87-case and we have to find another model for M87. 

The tidal forces in this model will – because of extended size of the ball (which has its root in the 

Fermi-exclusion-principle and therefore the existence of a Fermi-energy) be rather small. Stars are 

therefore not subjected to tidal disruption in this model – in contradiction to at least one very recent 

observation (RXJ1242-11 – see ref. 27). 

 An accretion disk will in the inner parts of the ball move at approximately constant velocity and 

cannot therefore generate the X-ray-flares that has been seen coming from the galactic center. A 

way of avoiding this difficulty is to invent a neutronstar near the center of the ball – and the gas 

falling down on the surface of this is then made responsable for the flares (ref. 23) – as it has been 

observed in several other neutronstars. 

The mass of the neutrino has to be at least 50 keV – if the neutrinoball should have a radius less 

than the pericenter-distance of S2. Therefore the neutrino cannot be one of the 3 known species 

(electron, muon, tau-neutrino). This would make make the total massdensity of the Universe bigger 

than the critical value. It must therefore be e.g. a sterile neutrino, an axion or a gravitino.  

The ball of neutrinos will – as opposed to the black hole – be able to transmit electromagnetic 

radiation even right through the center. The ball will act as a gravitational lense (magnifying glass) 

making the star-velocities behind (relative to the observer) seem greater. This transparency to EM 

radiation could serve as a way to observationally distinguish between a black hole and the weakly 

interacting dark matter alternatives without a singularity. 

Another serious problem in this neutrinoball-scenario is: what happens to the gas, stars and stellar 

remnants that is being accreted onto the ball – how can it be avoided that this matter will fall to the 

center of the neutrino-ball and form a massive black hole?  

These problems has led to the conclusion that the non-baryonic fermion-ball scenario is not very 

plausible (’bad standing’). 

 

A supermassive star of bosons 

In this alternative model the dark matter consists of elementary particles in the form of bosons. Like 

the former alternative to the black hole scenario this model has no singularity or event-horizon. 

There is not a Fermi-energy as the exclusion-principle is not relevant for bosons. The reason why 

the ball does not collapse is in this case the Heisenberg uncertainty-principle. The size of the boson-

ball is not much greater than the Schwarzschild-radius, and therefore most of the predictions of this 

boson-model are hard to distinguish from the black hole scenario (ref.26). 

The particles that are supposed to make up these boson-balls could be the Higgs-boson , the axion 

or Goldstone boson. None of these has yet been found in nature. The creation of the boson-stars 

could again happen in the early Universe in a first-order gravitational phase transition – the mass of 

the boson being connected the time of decoupling of the boson from the thermal pool. A greater 

mass means an earlier decoupling. 

Almost all of the predictions of a black hole scenario in relation to particles, stars etc. moving in the 

external gravitational field can be made by this model too, because the extension of the very 

compact boson-star is not much greater than the black hole (that is, a few times the gravitational 

radius of a black hole of the same mass). The maximum velocity of a circular orbit is approximately 
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30% of the speed of light – not much different from the black hole where the velocity in the 

innermost stable circular orbit is 50% of the speed of light (in the Schwartzschild-case). However, 

the model is completely transparent for EM radiation, as it is composed of particles only interacting 

by gravity. As in the former model no dark circel-area will exist. And the ball may act as a 

gravitational lense (magnifying glass). Also, particles can move right throught the center without 

being captured.  

But we must again ask the question: how can it be avioded that gas, stars, stellar black holes etc. 

being accreted by the boson-ball will not fall to the center of the gravitational potential and form a 

massive black hole – making the model more or less identical to the black hole scenario? 

It seems that not everybody does agree on the answer to this question. But Torres et al. (ref.26) may 

have the answer: in the boson-ball model all accreting stars are tidally disrupted. The atoms of the 

former star can move directly through the center of the boson-ball without being captured, 

following unbound orbits. The same goes for stellar black holes. And the result is, that no (massive) 

black hole is formed in the center. This disruption-mecanism is an importent difference in 

comparison to the neutrino-ball-scenario according to ref. 26. 

However, no numerical simulations of this event (accretion of a star by a boson-ball) has been made 

yet (year 2000), so the solution of this problem seems not yet secured. 

 

8. The Future  

How can we distinguish the different models of the central mass in the Milky Way? 

Several possibilities exist: very long baseline radio-interferometry VLBI (later also space-based 

instruments), infrared interferometry, X-ray-telescopes with improved angular resolution, and 

finally measurements of gravitational waves from stars orbiting the central mass.  

We begin with the prospects of VLBI (ref.28). As can be calculated by a ray-tracing algoritm, it 

should be entirely possible to directly see the shadow of the black hole using short-wavelength 

radiowaves. In ref. 28 some calculated ’pictures’ of this radioimage of the black hole in the center 

of the Milky Way is shown (fig. 7). In the calculations it is of course assumed that the black hole is 

surrounded by a source of radioemission – if not there is nothing to see! However, the source SgrA* 

is a strong radiosource, so that should not be a problem. 

 

The figures (a), 

(b) and (c) 

shows a black 

hole rotating at 

almost maxi-

mum rate, na-

mely  

g2
1998.0 ra   

where rg is 

defined by eq. 

(3) - while the 

figures (d), (e) 

and (f) shows a 

nonrotating 

black hole,  

a = 0.  

In the figures 

(a), (b) and (c) 

 

Fig. 7:   calculated shadows of the black hole in the center of the Galaxy  
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the black hole is surrounded by an optically thin emitting gas with an emissivity proportional to r
2

, 

the gas being in free fall. The angle between the rotational-axes and the direction to the observer is 

45. The figures (d), (e) and (f) shows an emitting gas rotating in shells with the circular velocity in 

the equatorial-plane - having a uniform emissivity, viewing angle 45. In these lower figures the 

emitting gas is limited to distances of g2
125 r  from the black hole (the scale on the horizontal axes 

is g2
1 r ). The intensity-variations along the x-axes (the black hole being in (0,0)) are shown by the 

solid green curves while the intensity-variations along the y-axes are shown by the dashed purple 

curves.  

The two left figures shows the result of the ray-tracing algoritm, while the two figures in the middle 

show what VLBI at 0.6 mm ideally would see, taking into account the interstellar scattering. The 

right figures shows what would be seen at the wavelength 1.3 mm.  

The calculations take into account e.g. frame dragging, gravitational redshift, light bending and 

Doppler boosting. 

The conclusion is that it is possible to see the shadow of the black hole using VLBI at a wavelength 

of 0.6 mm or shorter – and the size of the shadow will be approximately g2
110 r . This is close to the 

value calculated in eq. (22). The last measurement given in table 3 gives an intrinsic size of the 

central object of 6 rg – however the uncertainty is of the same order – but we are here very close to 

the expected size of the dark shadow! So it is to be expected that we in the very near future will see, 

whether the predictions shown in fig.7 will be found in nature. Or we will see right through the 

center as expected in the two alternative scenarios mentioned above. No ray-tracing calculations 

like the ones shown in fig.7 using these models have however been carried out. Therefore the 

scattering-signature expected in these models cannot be direcly compared to the observations yet. 

But there will no doubt be a significant difference – making it possible to exclude either the black 

hole scenario or the other. 

Takahashi (ref. 29) has calculated different forms for the shadow of the potential black hole in the 

center of the Milky Way – varying the rotational parameter, the viewing angle and using different 

forms of accretion-disks. The form of the shadow will depend on all these factors – making it 

difficult to determine e.g. the rotational parameter a from the shadow-form alone. 

 

If we assume that the baseline D of the VLTI (in full operation in the year 2005) is 100 m, and that 

the wavelength  is 2m, we get an angular resolution of 

 

(34) mas4102
m 100

m2 8  


D
 VLTI-resolution 

   

This corresponds to 32 rg – hardly small enough to resolve a black disk of size 5 rg.   

Using VLT and the Large Binocular Telescope in interferometry mode we can measure the orbits of 

stars even weaker in NIR and closer to SgrA* than the star S2 – thereby pinpointing the position of 

SgrA* (assuming it to be identical to the IR-source) and getting even better constrains on the mass 

of the hole and – as a byproduct – measuring the distance to the galactic center even better. Also, 

for the stars orbiting close to the central mass it may be possible to measure periastron-shifts, the 

general relativistic shifts being prograde – as opposed to the contribution from a extended mass 

contribution which will be retrograde (ref. 30). Also, gravitational bending of light (here NIR) 

might be a way of probing the strong gravitational field near the central massive object. 

 

If we turn our attension to the X-ray telescopes, the european XXM X-ray Observatory has a 

maximum angular resolution of  6 arcsec and the american Chandra X-ray Observatory a angular 
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resolution of 0.3 arcsec. Using the Chandra X-ray Observatory we will not be able to resolve a 

physical size of the central object within 33000 gr .  

However, if the proposed project X-ray observatory MAXIM is realised we will have an angular 

resolution of 0,001 mas(!!) and we will be able to see many details of accretion-disks and black 

disks of severel supermassive black holes, in the case of the black hole in the center of the Milky 

Way we will be able to see details as small as 0.1 gr . It is expected that the X-ray-emission comes 

from the very inner parts of the accretion disk, making the radiation a sensible measure of the strong 

gravitational potential. The K-alfa line of iron at 6.4 keV is being redshifted, Doppler-broadned etc. 

The profile of this line is also a function of the rotational parameter, the line of inclination (the 

angle between the rotation-axes and the line of sight) – assuming a Kerr-black hole. Precission-

measurements of this lineprofile is therefore a priority in e.g. the MAXIM X-ray mission (ref. 31). 

 

Finally we will look at the possibilities for detecting gravitational waves from the galactic center. 

One might naively expect that all stars would be tidally disrupted before they entered a orbit so 

close to the galactic center that the emission af gravitational waves become important.  

This is however not the case. If we take a look at a crude formula for the radius of tidal disruption 

of a star: 

 

(35) 3

*

*disruption tidal
M

M
Rr   

 

where Rstar is the radius of the star, Mstar is the mass of the star and finally M is the mass of the black 

hole (the central mass), we see that what matters is actually only the mean-density of the star and 

the black hole mass. The bigger the mean-density, the smaller the tidal radius will be. Using typical 

values for e.g. for the radius and mass of white dwarfs or neutronstars and the mass of SgrA* we 

find that they are not tidally disrupted outside the event-horizon (a rough estimate). Stellar black 

holes will also pass the eventhorizon of the massive black hole without disruption. If we take into 

consideration more normal stars (main-sequence stars etc), modelcalculations show that the mean-

density rises with smaller mass – reaching a maximum at about 0.07 MSun  - at the transition to 

brown dwarfs (ref.19). And as it is expected that there are many low-mass-stars, we might expect 

that there are at least some of these stars much closer to the central mass of the Galaxy than the star 

S2. 

In the weak field aproximation the orbit of a star can be treated as a Keplerian ellipse changing only 

slowly as the star looses energy to gravitational radiation. 

The strain amplitude hn (the amplitude of the relative change in length between the mirrors on the 

solid bodies defining the corners of the interferometer) of the of the gravitational waves 

(quadropole-type) belonging to frequency n times the orbital frequency 1/P - P being the period of 

the star in the orbit around the black hole - is (ref.19) 

 

(36)  
ac

MMG

D
enh






4

*BH

2

n

1
,  

 

where the factor (n,e) is a function of the integer n and the orbital eccentrity e. D is the distance 

from the source to the observer, G is the gravitational constant, MBH is the mass of the black hole, 

Mstar is the mass of the star, a is the semimajor axes of the ellipse of the star. 
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The strain-amplitude of eq. (36) is the root mean square of strain-amplitudes for all possible 

directions of the orbit of the gravitational-wave-emitting star and averaged over the two possible 

polarizations. 

In the case of a circular orbit only the n = 2 amplitude contributes. The gamma-factor depends on 

the polarization of the wave (2 possibilities) but is of the order 0.5. 

If we as an example take a circular orbit, D = 8,0 kpc, Mstar = MSun , Sun

6

BH 106.3 MM  and a = 0.1 

mpc, we get 

 

(37)   20

2 100,2  h  Hz104.6
1

yr05.0 5
P

P   

 

The period is calculated using 

Keplers 3. law.  

The frequency   is outside 

(below) the range of even the 

proposed spaceborn observatory 

LISA. But according to ref. 19 we 

might expect the orbits of the stars 

emitting gravitational radiation to 

be highly eccentric. In this case 

the hormonics with numbers far 

greater than 2 will dominate the 

frequency-spectrum, see e.g. ref. 

32, 33. This is illustrated in fig.8 

(ref.33), which shows the values 

of (n,e) in the case e =0.9 for 

both polarizations of the gravita-

tional wave. As can be seen on 

this figure, the maximum values 

of the -factors are still of order 

0.5 – but now the higher 

harmonics are clearly dominating 

the frequency-spectrum – bringing some of the frequencies closer to the frequencies LISA can 

measure, namely (at least in the second generation LIGO-system) frequencies in the range 0.0001 

Hz to 1 Hz at strain-amplitudes in the range of eq. (37). Values of e are expected to be much closer 

to 1 than in this illustrative example – making the higher harmonics even more important (ref.19). 

Also, the value of the semimajor axes a might be smaller in the period before the star is tidally 

disrupted – making the strain-amplitude of eq. (36) bigger. 

In a modelcalculation (ref.19) it is predicted that there might be 0.5 – 2 main-sequence stars with a 

mass below 0.6 solar masses emitting gravitational waves with a signal to noise-ratio (SNR) 

exceeding 10 (and 4 –8 with SNR greater than 3). White dwarfs and stellar black holes are less 

likely to be detected in gravitational waves by LISA in this modelcalculation.  

The results are of course sensitive to the assumed initial mass-function and the evolution over time 

in this mass-function. 

In fig.9 all the captures as a result of emission of gravitational radiation of the first 10 Gyr of the 

Monte Carlo simulation are shown giving their orbital parameters at the time of capture (when they 

plunge into into the massive black hole). The main-sequence-stars (MSS) are drawn with circles of 

 

Fig. 8: gamma-factors of strain amplitude harmonics  

of an elliptic orbit (ref.33) 
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an area proportional to their mass. Also white dwarf (WD), neutron star (NS) and stellar black hole-

captures are shown.  

Rperi is the pericenter-distance, Rs is the Schwarzschild-radius of the central black hole, e is the 

eccentricity of the orbit.  

Only stars with very elongated orbits are captured. 

 

9. Conclusion 

The massive object in the center of the Milky Way will be at the focus of a lot of research in the 

coming years. It is the best candidate known for a black hole – and we may in a few years time 

know whether the predictions of the General Theory of Relativity in the strong field regime are 

correct. If it is not a black hole, a few other possibilities have survived the observations. Some of 

these have been considered in this report – another interesting possibility is a socalled grava-star 

(gravitational vacuum star). The event-horizon of the black hole is replaced by a transition-layer. In 

the central part of this model is matter obeying the equation of state 2cP   , where P is the 

pressure (negative!) and  is the mass-density, giving rise to a de Sitter Space – geometry (ref.34).  

We will have to wait for some years before LISA can detect gravitational waves from stars orbiting 

the massive object and before MAXIM can give us very detailed pictures and spectra of the inner-

most parts of the Milky Way center. But before this can happen, we might in the very near future 

see (or not see!) the black shadow of the exiting object in the midst of our Galaxy, using VLBI and 

mm-radiowaves or see the gravitational bending of light from stars very close to the center of the 

Galaxy – also making it possible to distinguish between different models of the massive central 

object. 

 

Fig. 9: orbital parameters at capture for MSS (purple), WD 

(cyan) NS (blue) and SBH's (green) (ref.19) 
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So maybe – just maybe - the center of the Milky Way is even more strange than a black hole!? Soon 

we will know! 
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Appendix 1 The Kerr-Newton-metric and related stuff 

 

The Kerr-Newmann metric (in Boyer-Lindquist coordinates) is given by (see fx Misner, 

Thorne,Wheeler: Gravitation p.877 og 898)  
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From this the coefficients of the metric tensor can be read (the not listed values are 0): 
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The reciprocal tensor is therefore given by (not listed values are 0) 
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From this we can calculate the Christoffel-indices we need: 
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The equation of motion for free fall is 
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But the second (and first) derivative of r in a circular motion is 0, and therefore the eq. of motion 

becomes 
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as postulated in eq. (11). 

The equation (1) can be integrated to give a first order equation giving (see fx Hartle 2003 p.317 -  

318 - we have here kept the proper time  as parameter of the orbit) 
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is the effective potential governing the radial motion. Here the quantity e are the energy per unit 

mass of the particle, l is the angular momentum of the particle. 

The criterion of stable circular orbits can be formulated as 
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(4c) 0
2
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2
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V
  stability against small variations in r 

 

In the case of the innermost stable circular orbit the inequality sign in (4c) should be replaced by an 

equality-sign. 

Thus we get 3 equations with the 3 unknown quantities e, l, r – all functions of a. It is not difficult 

to show that r has to be a solution of the equation 
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where r is measured in the unit gr , a  in the unit gr . 

The quantity gr  is defined by 
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To get r as a function of a we must solve eq. (1a) taken together with (5). The result of this 

(numerical solution) can be found in appendix 
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Appendix 2 

r-plus as a function of a

0

0,5

1

1,5

2

2,5

3

3,5

0 0,1 0,2 0,3 0,4 0,5 0,6

rotational parameter a/2M

ra
d

ia
l 

p
a

ra
m

e
te

r 
r-

p
lu

s
/2

M



Børge L. Nielsen 33 

Appendix 3 

 

P as a function of a
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